A recently proposed variation principle [N. I. Gidopoulos, Phys. Rev. A 83, 040502(R) (2011)] for the determination of Kohn–Sham effective potentials is examined and extended to arbitrary electron-interaction strengths and to mixed states. Comparisons are drawn with Lieb’s convex-conjugate functional, which allows for the determination of a potential associated with a given electron density by maximization, yielding the Kohn–Sham potential for a non-interacting system. The mathematical structure of the two functionals is shown to be intrinsically related; the variation principle put forward by Gidopoulos may be expressed in terms of the Lieb functional. The equivalence between the information obtained from the two approaches is illustrated numerically by their implementation in a common framework.

1.
N. I.
Gidopoulos
,
Phys. Rev. A
83
,
040502(R)
(
2011
).
2.
E. R.
Davidson
,
Reduced Density Matrices in Quantum Chemistry
, Volume 6 of Theoretical Chemistry (
Elsevier BV
,
1976
).
3.
M.
Levy
,
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
(
1979
).
4.
M.
Levy
and
J. P.
Perdew
,
Int. J. Quantum Chem.
21
,
511
(
1982
).
5.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
6.
S.
Kvaal
and
T.
Helgaker
,
J. Chem. Phys.
143
,
184106
(
2015
).
7.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
8.
P. E.
Lammert
,
Int. J. Quantum Chem.
107
,
1943
(
2007
).
9.
S.
Kvaal
,
U.
Ekström
,
A. M.
Teale
, and
T.
Helgaker
,
J. Chem. Phys.
140
,
18A518
(
2014
).
10.
D.
Langreth
and
J.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
11.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
12.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
13.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
15
,
6006
(
1977
).
14.
W.
Yang
,
J. Chem. Phys.
109
,
10107
(
1998
).
15.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Mol. Phys.
103
,
2725
(
2005
).
16.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
133
,
164112
(
2010
).
17.
H.
Hellmann
, “
Einführung in die quantenchemie
,” in
Hans Hellmann: Einführung in die Quantenchemie
(
Springer Science + Business Media
,
2015
), pp.
19
376
.
18.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
19.
A.
Savin
,
F.
Colonna
, and
R.
Pollet
,
Int. J. Quantum Chem.
93
,
166
(
2003
).
20.
F.
Colonna
and
A.
Savin
,
J. Chem. Phys.
110
,
2828
(
1999
).
21.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
130
,
104111
(
2009
).
22.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
132
,
164115
(
2010
).
23.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
24.
E.
Fermi
and
E.
Amaldi
,
R. Accad. Ital. Mem.
6
,
119
(
1934
).
25.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
26.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
27.
Q.
Wu
and
W.
Yang
,
J. Theor. Comput. Chem.
2
,
627
(
2003
).
28.
QUEST, a rapid development platform for QUantum Electronic Structure Techniques, 2017, http://quest.codes.
29.
Numba, version 0.32, 2017, numba.pydata.org.
30.
S. K.
Lam
,
A.
Pitrou
, and
S.
Seibert
, “
Numba
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC - LLVM’15
(
ACM Press
,
2015
).
31.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
,
Int. J. Quantum Chem.
64
,
285
(
1997
).
You do not currently have access to this content.