We have developed a new basis set family, denoted as aug-cc-pVnZ-F12 (or aVnZ-F12 for short), for explicitly correlated calculations. The sets included in this family were constructed by supplementing the corresponding cc-pVnZ-F12 sets with additional diffuse functions on the higher angular momenta (i.e., additional d-h functions on non-hydrogen atoms and p-g on hydrogen atoms), optimized for the MP2-F12 energy of the relevant atomic anions. The new basis sets have been benchmarked against electron affinities of the first- and second-row atoms, the W4-17 dataset of total atomization energies, the S66 dataset of noncovalent interactions, the Benchmark Energy and Geometry Data Base water cluster subset, and the WATER23 subset of the GMTKN24 and GMTKN30 benchmark suites. The aVnZ-F12 basis sets displayed excellent performance, not just for electron affinities but also for noncovalent interaction energies of neutral and anionic species. Appropriate CABSs (complementary auxiliary basis sets) were explored for the S66 noncovalent interaction benchmark: between similar-sized basis sets, CABSs were found to be more transferable than generally assumed.

1.
W. J.
Hehre
,
L.
Radom
,
P. V. R.
Schleyer
, and
J. A.
Pople
,
Ab Initio Molecular Orbital Theory
(
Wiley
,
New York
,
1986
).
2.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
(
6
),
479
483
(
1989
).
3.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
, “
Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients
,”
J. Chem. Phys.
98
(
11
),
8718
8733
(
1993
).
4.
R. J.
Bartlett
, “
Many-body perturbation theory and coupled cluster theory for electron correlation in molecules
,”
Annu. Rev. Phys. Chem.
32
(
1
),
359
401
(
1981
).
5.
R. J.
Bartlett
, “
Coupled-cluster approach to molecular structure and spectra: A step toward predictive quantum chemistry
,”
J. Phys. Chem.
93
(
5
),
1697
1708
(
1989
).
6.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
(
1
),
291
352
(
2007
).
7.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge University Press
,
Cambridge
,
2009
).
8.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled-cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
(
4
),
1910
1918
(
1982
).
9.
W.
Kutzelnigg
and
J. D.
Morgan
, “
Rates of convergence of the partial-wave expansions of atomic correlation energies
,”
J. Chem. Phys.
96
(
6
),
4484
4508
(
1992
).
10.
C.
Schwartz
, “
Importance of angular correlations between atomic electrons
,”
Phys. Rev.
126
(
3
),
1015
1019
(
1962
).
11.
R. N.
Hill
, “
Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method
,”
J. Chem. Phys.
83
(
3
),
1173
1196
(
1985
).
12.
J. M. L.
Martin
, “
Ab initio total atomization energies of small molecules — towards the basis set limit
,”
Chem. Phys. Lett.
259
(
5–6
),
669
678
(
1996
).
13.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
(
3–4
),
243
252
(
1998
).
14.
W.
Klopper
, “
Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques
,”
Mol. Phys.
99
(
6
),
481
507
(
2001
).
15.
D. S.
Ranasinghe
and
G. A.
Petersson
, “
CCSD(T)/CBS atomic and molecular benchmarks for H through Ar
,”
J. Chem. Phys.
138
(
14
),
144104
(
2013
).
16.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
1989
(
90
),
1007
.
17.
K. A.
Peterson
, “
Chapter 11 Gaussian basis sets exhibiting systematic convergence to the complete basis set limit
,”
Annu. Rep. Comput. Chem.
3
(
7
),
195
206
(
2007
).
18.
J. G.
Hill
, “
Gaussian basis sets for molecular applications
,”
Int. J. Quantum Chem.
113
(
1
),
21
34
(
2013
).
19.
D.
Feller
,
K. A.
Peterson
, and
J.
Grant Hill
, “
On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies
,”
J. Chem. Phys.
135
(
4
),
44102
(
2011
).
20.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
(
9
),
6796
6806
(
1992
).
21.
A.
Halkier
,
H.
Koch
,
P.
Jørgensen
,
O.
Christiansen
,
I. M. B.
Nielsen
, and
T.
Helgaker
, “
A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models
,”
Theor. Chem. Acc.
97
(
1–4
),
150
157
(
1997
).
22.
P.
Hobza
and
R.
Zahradnik
, “
Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures
,”
Chem. Rev.
88
(
6
),
871
897
(
1988
).
23.
J.
Řezáč
and
P.
Hobza
, “
Benchmark calculations of interaction energies in noncovalent complexes and their applications
,”
Chem. Rev.
116
(
9
),
5038
5071
(
2016
).
24.
J. A.
Platts
,
J. G.
Hill
,
K. E.
Riley
,
J.
Řezáč
, and
P.
Hobza
, “
Basis set dependence of interaction energies computed using composite post-MP2 methods
,”
J. Chem. Theory Comput.
9
(
1
),
330
337
(
2013
).
25.
C.
Hättig
,
G.
Schmitz
, and
J.
Kossmann
, “
Auxiliary basis sets for density-fitted correlated wavefunction calculations: Weighted core-valence and ECP basis sets for post-d elements
,”
Phys. Chem. Chem. Phys.
14
(
18
),
6549
6555
(
2012
).
26.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
, “
Explicitly correlated R12/F12 methods for electronic structure
,”
Chem. Rev.
112
(
1
),
75
107
(
2012
).
27.
S.
Ten-no
and
J.
Noga
, “
Explicitly correlated electronic structure theory from R12/F12 ansätze
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
1
),
114
125
(
2012
).
28.
S.
Ten-no
, “
Explicitly correlated wave functions: Summary and perspective
,”
Theor. Chem. Acc.
131
(
1
),
1070
(
2012
).
29.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-No
, and
E. F.
Valeev
, “
R12 methods in explicitly correlated molecular electronic structure theory
,”
Int. Rev. Phys. Chem.
25
(
3
),
427
468
(
2006
).
30.
W.
Kutzelnigg
, “
r12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l
,”
Theor. Chim. Acta
68
(
6
),
445
469
(
1985
).
31.
W.
Kutzelnigg
and
W.
Klopper
, “
Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory
,”
J. Chem. Phys.
94
(
3
),
1985
2001
(
1991
).
32.
D. P.
Tew
and
W.
Klopper
, “
New correlation factors for explicitly correlated electronic wave functions
,”
J. Chem. Phys.
123
(
7
),
74101
(
2005
).
33.
S.
Ten-no
, “
Initiation of explicitly correlated Slater-type geminal theory
,”
Chem. Phys. Lett.
398
(
1–3
),
56
61
(
2004
).
34.
W.
Klopper
and
C. C. M.
Samson
, “
Explicitly correlated second-order Møller-Plesset methods with auxiliary basis sets
,”
J. Chem. Phys.
116
(
15
),
6397
6410
(
2002
).
35.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
, “
General orbital invariant MP2-F12 theory
,”
J. Chem. Phys.
126
(
16
),
164102
(
2007
).
36.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
(
22
),
221106
(
2007
).
37.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD(T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
(
5
),
54104
(
2009
).
38.
G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.
Werner
, “
Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
,”
J. Chem. Phys.
131
(
19
),
194105
(
2009
).
39.
D.
Feller
and
K. A.
Peterson
, “
An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies
,”
J. Chem. Phys.
139
(
8
),
084110
(
2013
).
40.
A.
Karton
and
J. M. L.
Martin
, “
Explicitly correlated Wn theory: W1-F12 and W2-F12
,”
J. Chem. Phys.
136
(
12
),
124114
(
2012
).
41.
N.
Sylvetsky
,
K. A.
Peterson
,
A.
Karton
, and
J. M. L.
Martin
, “
Toward a W4–F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
,”
J. Chem. Phys.
144
(
21
),
214101
(
2016
).
42.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
(
8
),
84102
(
2008
).
43.
J. G.
Hill
and
K. A.
Peterson
, “
Correlation consistent basis sets for explicitly correlated wavefunctions: Valence and core-valence basis sets for Li, Be, Na, and Mg
,”
Phys. Chem. Chem. Phys.
12
(
35
),
10460
10468
(
2010
).
44.
J. G.
Hill
and
K. A.
Peterson
, “
Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the post-d main group elements Ga–Rn
,”
J. Chem. Phys.
141
(
9
),
094106
(
2014
).
45.
K. A.
Peterson
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
The cc-pV5Z-F12 basis set: Reaching the basis set limit in explicitly correlated calculations
,”
Mol. Phys.
113
(
13–14
),
1551
1558
(
2015
).
46.
D.
Manna
,
M. K.
Kesharwani
,
N.
Sylvetsky
, and
J. M. L.
Martin
, “
Conventional and explicitly correlated ab initio benchmark study on water clusters: Revision of the BEGDB and WATER27 data sets
,”
J. Chem. Theory Comput.
13
(
7
),
3136
3152
(
2017
).
47.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselman
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R. M.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2015.1, a package of ab initio programs, 2015, see http://www.molpro.net.
48.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
2
),
242
253
(
2012
).
49.
J.
Noga
and
J.
Šimunek
, “
On the one-particle basis set relaxation in R12 based theories
,”
Chem. Phys.
356
(
1–3
),
1
6
(
2009
).
50.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
(
18
),
4285
4291
(
2002
).
51.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
(
8
),
3175
3183
(
2002
).
52.
C.
Hättig
, “
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr
,”
Phys. Chem. Chem. Phys.
7
(
1
),
59
66
(
2005
).
53.
E. F.
Valeev
, “
Improving on the resolution of the identity in linear R12 ab initio theories
,”
Chem. Phys. Lett.
395
(
4–6
),
190
195
(
2004
).
54.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
, “
Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12
,”
J. Chem. Phys.
132
(
23
),
231102
(
2010
).
55.
J. M. L.
Martin
and
M. K.
Kesharwani
, “
Assessment of CCSD(T)-F12 approximations and basis sets for harmonic vibrational frequencies
,”
J. Chem. Theory Comput.
10
(
5
),
2085
2090
(
2014
).
56.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
(
2
),
1358
1371
(
1993
).
57.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, “
Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2 → H2 + H reaction
,”
J. Chem. Phys.
100
(
10
),
7410
(
1994
).
58.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66x8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
Phys. Chem. Chem. Phys.
18
(
31
),
20905
20925
(
2016
).
59.
J. E.
Del Bene
, “
Proton affinities of ammonia, water, and hydrogen fluoride and their anions: A quest for the basis-set limit using the Dunning augmented correlation-consistent basis sets
,”
J. Phys. Chem.
97
(
1
),
107
110
(
1993
).
60.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
, “
Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions
,”
J. Chem. Theory Comput.
7
(
10
),
3027
3034
(
2011
).
61.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
(
11
),
4572
4585
(
1995
).
62.
K. A.
Peterson
and
T. H.
Dunning
, “
Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
,”
J. Chem. Phys.
117
(
23
),
10548
10560
(
2002
).
63.
F.
Neese
and
E. F.
Valeev
, “
Revisiting the atomic natural orbital approach for basis sets: Robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods?
,”
J. Chem. Theory Comput.
7
(
1
),
33
43
(
2011
).
64.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
(
4
),
553
566
(
1970
).
65.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Comparing counterpoise-corrected, uncorrected, and averaged binding energies for benchmarking noncovalent interactions
,”
J. Chem. Theory Comput.
10
(
1
),
49
57
(
2014
).
66.
B.
Brauer
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions
,”
J. Chem. Theory Comput.
10
(
9
),
3791
3799
(
2014
).
67.
J. M. L.
Martin
,
J.-P.
François
, and
R.
Gijbels
, “
Combined bond-polarization basis sets for accurate determination of dissociation energies
,”
Theor. Chim. Acta
76
(
3
),
195
209
(
1989
).
68.
B. H.
Wells
and
S.
Wilson
, “
Van der Waals interaction potentials: Many-body basis set superposition effects
,”
Chem. Phys. Lett.
101
(
4–5
),
429
434
(
1983
).
69.
R.
Ahlrichs
and
P. R.
Taylor
, “
The choice of Gaussian basis sets for molecular electronic structure calculations
,”
J. Chim. Phys.
78
(
4
),
315
324
(
1981
).
70.
M. A.
Iron
,
M.
Oren
, and
J. M. L.
Martin
, “
Alkali and alkaline earth metal compounds: Core—valence basis sets and importance of subvalence correlation
,”
Mol. Phys.
101
(
9
),
1345
1361
(
2003
).
71.
K. R.
Lykke
,
K. K.
Murray
, and
W. C.
Lineberger
, “
Threshold photodetachment of H
,”
Phys. Rev. A
43
(
11
),
6104
6107
(
1991
).
72.
M.
Scheer
,
R. C.
Bilodeau
,
J.
Thøgersen
, and
H. K.
Haugen
, “
Threshold photodetachment of Al: Electron affinity and fine structure
,”
Phys. Rev. A
57
(
3
),
R1493
R1496
(
1998
).
73.
M.
Scheer
,
R. C.
Bilodeau
, and
H. K.
Haugen
, “
Negative ion of boron: An experimental study of the 3P ground state
,”
Phys. Rev. Lett.
80
(
12
),
2562
2565
(
1998
).
74.
M.
Scheer
,
R.
Bilodeau
,
C.
Brodie
, and
H.
Haugen
, “
Systematic study of the stable states of C, Si, Ge, and Sn via infrared laser spectroscopy
,”
Phys. Rev. A
58
(
4
),
2844
2856
(
1998
).
75.
W.
Chaibi
,
R. J.
Peláez
,
C.
Blondel
,
C.
Drag
, and
C.
Delsart
, “
Effect of a magnetic field in photodetachment microscopy
,”
Eur. Phys. J. D
58
(
1
),
29
37
(
2010
).
76.
D. M.
Neumark
,
K. R.
Lykke
,
T.
Andersen
, and
W. C.
Lineberger
, “
Laser photodetachment measurement of the electron affinity of atomic oxygen
,”
Phys. Rev. A
32
(
3
),
1890
1892
(
1985
).
77.
R. J.
Peláez
,
C.
Blondel
,
M.
Vandevraye
,
C.
Drag
, and
C.
Delsart
, “
Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus
,”
J. Phys. B: At., Mol. Opt. Phys.
44
(
19
),
195009
(
2011
).
78.
C.
Blondel
,
W.
Chaibi
,
C.
Delsart
, and
C.
Drag
, “
The fine structure of S and S measured with the photodetachment microscope
,”
J. Phys. B: At., Mol. Opt. Phys.
39
(
6
),
1409
1416
(
2006
).
79.
U.
Berzinsh
,
M.
Gustafsson
,
D.
Hanstorp
,
A.
Klinkmüller
,
U.
Ljungblad
, and
A.-M.
Mårtensson-Pendrill
, “
Isotope shift in the electron affinity of chlorine
,”
Phys. Rev. A
51
(
1
),
231
238
(
1995
).
80.
M.
Kállay
and
P. R.
Surján
, “
Higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
115
(
7
),
2945
2954
(
2001
).
81.
M.
Kállay
and
J.
Gauss
, “
Approximate treatment of higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
123
(
21
),
214105
(
2005
).
82.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
, “
Coupled-cluster methods including noniterative corrections for quadruple excitations
,”
J. Chem. Phys.
123
(
5
),
54101
(
2005
).
83.
M.
Kállay
and
J.
Gauss
, “
Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case
,”
J. Chem. Phys.
129
(
14
),
144101
(
2008
).
84.
M.
Kallay
,
Z.
Rolik
,
J.
Csontos
,
I.
Ladjanski
,
L.
Szegedy
,
B.
Ladoczki
, and
G.
Samu
, MRCC, a Quantum Chemical Program Suite,
Budapest University of Technology and Economics
,
Budapest, Hungary
,
2015
, see http://www.mrcc.hu.
85.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
, “
Transgressing theory boundaries: The generalized Douglas-Kroll transformation
,” in
Recent Advances in Relativistic Molecular Theory
, edited by
K.
Hirao
and
Y.
Ishikawa
(
World Scientific Publishing
,
Singapore
,
2004
), pp.
137
190
.
86.
M.
Reiher
, “
Douglas–Kroll–Hess theory: A relativistic electrons-only theory for chemistry
,”
Theor. Chem. Acc.
116
(
1–3
),
241
252
(
2006
).
87.
D.
Peng
and
M.
Reiher
, “
Exact decoupling of the relativistic Fock operator
,”
Theor. Chem. Acc.
131
(
1
),
1
20
(
2012
).
88.
K. G.
Dyall
and
K.
Faegri
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
New York
,
2007
).
89.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2009
).
90.
J.
Gauss
,
A.
Tajti
,
M.
Kállay
,
J. F.
Stanton
, and
P. G.
Szalay
, “
Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory
,”
J. Chem. Phys.
125
(
14
),
144111
(
2006
).
91.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
,
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Juselius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffman
,
C.
Simmons
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
,
J.
Almlöf
,
P. R.
Taylor
,
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
,
J.
Olsen
,
A. V.
Mitin
, and
C.
van Wüllen
, CFOUR,
Mainz, Germany; Austin, TX; Budapest, Hungary
,
2010
.
92.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
(
4
),
1559
2259
(
2005
).
93.
T.
Carette
and
M. R.
Godefroid
, “
Theoretical study of the C4S3/2o and 2D3/2,5/2o bound states and C ground configuration: Fine and hyperfine structures, isotope shifts, and transition probabilities
,”
Phys. Rev. A
83
(
6
),
062505
(
2011
).
94.
T. M.
Miller
, “
Electron affinities
,” in
CRC Handbook of Chemistry and Physics
, 98th ed., edited by
J. R.
Rumble
(
CRC Press/Taylor & Francis
,
Boca Raton, FL
,
2018
).
95.
W.
Klopper
,
R. A.
Bachorz
,
D. P.
Tew
, and
C.
Hättig
, “
Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne
,”
Phys. Rev. A
81
(
2
),
022503
(
2010
).
96.
G.
de Oliveira
,
J. M. L.
Martin
,
F.
de Proft
, and
P.
Geerlings
, “
Electron affinities of the first- and second-row atoms: Benchmark ab initio and density-functional calculations
,”
Phys. Rev. A
60
(
2
),
1034
1045
(
1999
).
97.
J. M.
García de la Vega
, “
Relativistic corrections to the atomic electron affinities
,”
Phys. Rev. A
51
(
3
),
2616
2618
(
1995
).
98.
T.
Koga
,
H.
Aoki
,
J. M. G.
de la Vega
, and
H.
Tatewaki
, “
Atomic ionization potentials and electron affinities with relativistic and mass corrections
,”
Theor. Chem. Acc.
96
(
4
),
248
255
(
1997
).
99.
A.
Karton
,
S.
Daon
, and
J. M. L.
Martin
, “
W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data
,”
Chem. Phys. Lett.
510
,
165
178
(
2011
).
100.
A.
Karton
,
N.
Sylvetsky
, and
J. M. L.
Martin
, “
W4-17: A diverse and high-confidence dataset of atomization energies for benchmarking high-level electronic structure methods
,”
J. Comput. Chem.
38
(
24
),
2063
2075
(
2017
).
101.
J.
Rezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
(
8
),
2427
2438
(
2011
).
102.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
Extensions of the S66 data set: More accurate interaction energies and angular-displaced nonequilibrium geometries
,”
J. Chem. Theory Comput.
7
(
11
),
3466
3470
(
2011
).
103.
R. A.
Shaw
and
J. G.
Hill
, “
Approaching the Hartree–Fock limit through the complementary auxiliary basis set singles correction and auxiliary basis sets
,”
J. Chem. Theory Comput.
13
(
4
),
1691
1698
(
2017
).
104.
J.
Řezáč
,
P.
Jurečka
,
K. E.
Riley
,
J.
Černý
,
H.
Valdes
,
K.
Pluháčková
,
K.
Berka
,
T.
Řezáč
,
M.
Pitoňák
,
J.
Vondrášek
, and
P.
Hobza
, “
Quantum chemical benchmark energy and geometry database for molecular clusters and complex molecular systems (www.begdb.com): A users manual and examples
,”
Collect. Czech. Chem. Commun.
73
(
10
),
1261
1270
(
2008
).
105.
R. M.
Shields
,
B.
Temelso
,
K. A.
Archer
,
T. E.
Morrell
, and
G. C.
Shields
, “
Accurate predictions of water cluster formation, (H2O)n=2–10
,”
J. Phys. Chem. A
114
(
43
),
11725
11737
(
2010
).
106.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
, “
Water molecule interactions
,”
J. Chem. Phys.
53
(
12
),
4544
4554
(
1970
).
107.
S. S.
Xantheas
, “
Ab initio studies of cyclic water clusters (H2O)n, n = 1–6. II. Analysis of many-body interactions
,”
J. Chem. Phys.
100
(
10
),
7523
7534
(
1994
).
108.
D. M.
Bates
,
J. R.
Smith
,
T.
Janowski
, and
G. S.
Tschumper
, “
Development of a 3-body:many-body integrated fragmentation method for weakly bound clusters and application to water clusters (H2O)n=3–10, 16, 17
,”
J. Chem. Phys.
135
(
4
),
44123
(
2011
).
109.
J. C.
Howard
and
G. S.
Tschumper
, “
N-body:many-body QM:QM vibrational frequencies: Application to small hydrogen-bonded clusters
,”
J. Chem. Phys.
139
(
18
),
184113
(
2013
).
110.
C. J.
Burnham
and
S. S.
Xantheas
, “
Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface
,”
J. Chem. Phys.
116
(
4
),
1479
1492
(
2002
).
111.
S. S.
Xantheas
,
C. J.
Burnham
, and
R. J.
Harrison
, “
Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles
,”
J. Chem. Phys.
116
(
4
),
1493
1499
(
2002
).
112.
J.
Friedrich
,
H.
Yu
,
H. R.
Leverentz
,
P.
Bai
,
J. I.
Siepmann
, and
D. G.
Truhlar
, “
Water 26-mers drawn from bulk simulations: Benchmark binding energies for unprecedentedly large water clusters and assessment of the electrostatically embedded three-body and pairwise additive approximations
,”
J. Phys. Chem. Lett.
5
(
4
),
666
670
(
2014
).
113.
L.
Goerigk
and
S.
Grimme
, “
A general database for main group thermochemistry, kinetics, and noncovalent interactions—Assessment of common and reparameterized (meta-)GGA density functionals
,”
J. Chem. Theory Comput.
6
(
1
),
107
126
(
2010
).
114.
L.
Goerigk
and
S.
Grimme
, “
Efficient and accurate double-hybrid-meta-GGA density functionals—Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
7
(
2
),
291
309
(
2011
).
115.
V. S.
Bryantsev
,
M. S.
Diallo
,
A. C. T.
van Duin
, and
W. A.
Goddard
, “
Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters
,”
J. Chem. Theory Comput.
5
(
4
),
1016
1026
(
2009
).
116.
K. E.
Yousaf
and
K. A.
Peterson
, “
Optimized auxiliary basis sets for explicitly correlated methods
,”
J. Chem. Phys.
129
(
18
),
184108
(
2008
).
117.
K. E.
Yousaf
and
K. A.
Peterson
, “
Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets
,”
Chem. Phys. Lett.
476
(
4–6
),
303
307
(
2009
).
118.
N.
Sylvetsky
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
MP2–F12 basis set convergence for the S66 noncovalent interactions benchmark: Transferability of the complementary auxiliary basis set (CABS)
,” in
Proceedings of ICCMSE-2017
,
Thessaloniki, Greece
,
21-26 April 2017
; preprint arXiv:1705.01891.

Supplementary Material

You do not currently have access to this content.