We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the “slant” angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.

1.
A.
Haji-Akbari
,
M.
Engel
,
A. S.
Keys
,
X.
Zheng
,
R. G.
Petschek
,
P.
Palffy-Muhoray
, and
S. C.
Glotzer
,
Nature
462
,
773
(
2009
).
2.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
,
Science
337
,
453
(
2012
).
3.
U.
Agarwal
and
F. A.
Escobedo
,
Nat. Mater.
10
,
230
(
2011
).
4.
S.
Dussi
and
M.
Dijkstra
,
Nat. Commun.
7
,
11175
(
2016
).
5.
M.
Marechal
,
A.
Patti
,
M.
Dennison
, and
M.
Dijkstra
,
Phys. Rev. Lett.
108
,
206101
(
2012
).
6.
R.
Ni
,
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
,
Soft Matter
8
,
8826
(
2012
).
7.
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
,
Phys. Rev. Lett.
111
,
015501
(
2013
).
8.
F.
Smallenburg
,
L.
Filion
,
M.
Marechal
, and
M.
Dijkstra
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17886
(
2012
).
9.
S.
Whitelam
,
I.
Tamblyn
,
P. H.
Beton
, and
J. P.
Garrahan
,
Phys. Rev. Lett.
108
,
035702
(
2012
).
10.
S.
Gottschalk
,
M. C.
Lin
, and
D.
Manocha
, in
SIGGRAPH ’96, Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
(
ACM
,
1996
), pp.
171
180
.
11.
L.
Hernández de la Peña
,
R.
van Zon
,
J.
Schofield
, and
S. B.
Opps
,
J. Chem. Phys.
126
,
074105
(
2007
).
12.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2001
).
13.
G.
van Anders
,
D.
Klotsa
,
A. S.
Karas
,
P. M.
Dodd
, and
S. C.
Glotzer
,
ACS Nano
9
,
9542
(
2015
).
14.
C.
Vega
and
E. G.
Noya
,
J. Chem. Phys.
127
,
154113
(
2007
).
15.
C.
Vega
,
E.
Sanz
,
J.
Abascal
, and
E.
Noya
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
16.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
17.
R.
Martoňák
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
075503
(
2003
).
18.
L.
Filion
,
M.
Marechal
,
B.
van Oorschot
,
D.
Pelt
,
F.
Smallenburg
, and
M.
Dijkstra
,
Phys. Rev. Lett.
103
,
188302
(
2009
).
19.
A.
Bruce
,
N.
Wilding
, and
G.
Ackland
,
Phys. Rev. Lett.
79
,
3002
(
1997
).
20.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
21.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
22.
M.
Marechal
,
A.
Cuetos
,
B.
Martínez-Haya
, and
M.
Dijkstra
,
J. Chem. Phys.
134
,
094501
(
2011
).
23.
K.
Zhao
and
T. G.
Mason
,
J. Am. Chem. Soc.
134
,
18125
(
2012
).
24.
L.
Rossi
,
V.
Soni
,
D. J.
Ashton
,
D. J.
Pine
,
A. P.
Philipse
,
P. M.
Chaikin
,
M.
Dijkstra
,
S.
Sacanna
, and
W. T.
Irvine
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
5286
(
2015
).
25.
C.
Avendaño
and
F. A.
Escobedo
,
Soft Matter
8
,
4675
(
2012
).
26.
K.
Zhao
,
R.
Bruinsma
, and
T. G.
Mason
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
2684
(
2011
).
You do not currently have access to this content.