The fast Ewald methods are widely used to compute the point-charge electrostatic interactions in molecular simulations. The key step that introduces errors in the computation is the particle-mesh interpolation. In this work, the optimal interpolation basis is derived by minimizing the estimated error of the fast Ewald method. The basis can be either general or model specific, depending on whether or not the charge correlation has been taken into account. By using the TIP3P water as an example system, we demonstrate that the general optimal basis is always more accurate than the B-spline basis in the investigated parameter range, while the computational cost is at most 5% more expensive. In some cases, the optimal basis is found to be two orders of magnitude more accurate. The model specific optimal basis further improves the accuracy of the general optimal basis, but requires more computational effort in the optimization, and may not be transferable to systems with different charge correlations. Therefore, the choice between the general and model specific optimal bases is a trade-off between the generality and the accuracy.

1.
D.
van der Spoel
and
P. J.
van Maaren
, “
The origin of layer structure artifacts in simulations of liquid water
,”
J. Chem. Theory Comput.
2
(
1
),
1
11
(
2006
).
2.
P. P.
Ewald
, “
Die berechnung optischer und elektrostatischer gitterpotentiale
,”
Ann. Phys.
369
(
3
),
253
287
(
1921
).
3.
E. L.
Pollock
and
J.
Glosli
, “
Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems
,”
Comput. Phys. Commun.
95
(
2-3
),
93
110
(
1996
).
4.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
(
2013
).
5.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
(
16
),
1781
1802
(
2005
).
6.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
7.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
(
1993
).
8.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
(
19
),
8577
(
1995
).
9.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
IOP
,
London
,
1988
).
10.
M.
Deserno
and
C.
Holm
, “
How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines
,”
J. Chem. Phys.
109
,
7678
(
1998
).
11.
F.
Hedman
and
A.
Laaksonen
, “
Ewald summation based on nonuniform fast Fourier transform
,”
Chem. Phys. Lett.
425
(
1-3
),
142
147
(
2006
).
12.
M.
Pippig
, “
PFFT: An extension of FFTW to massively parallel architectures
,”
SIAM J. Sci. Comput.
35
(
3
),
C213
C236
(
2013
).
13.
M.
Deserno
and
C.
Holm
, “
How to mesh up Ewald sums. II. An accurate error estimate for the particle–particle–particle-mesh algorithm
,”
J. Chem. Phys.
109
,
7694
(
1998
).
14.
H.
Wang
,
F.
Dommert
, and
C.
Holm
, “
Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency
,”
J. Chem. Phys.
133
,
034117
(
2010
).
15.
V.
Ballenegger
,
J. J.
Cerdà
, and
C.
Holm
, “
How to convert SPME to P3M: Influence functions and error estimates
,”
J. Chem. Theory Comput.
8
,
936
947
(
2012
).
16.
H.
Wang
,
P.
Zhang
, and
C.
Schütte
, “
On the numerical accuracy of Ewald, smooth particle mesh Ewald, and staggered mesh Ewald methods for correlated molecular systems
,”
J. Chem. Theory Comput.
8
(
9
),
3243
3256
(
2012
).
17.
F.
Nestler
, “
Parameter tuning for the NFFT based fast Ewald summation
,”
Front. Phys.
4
,
28
(
2016
).
18.
X.
Gao
,
J.
Fang
, and
H.
Wang
, “
Kaiser-Bessel basis for the particle-mesh interpolation
,”
Phys. Rev. E
95
,
063303
(
2017
).
19.
V.
Ballenegger
,
A.
Arnold
, and
J. J.
Cerda
, “
Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions
,”
J. Chem. Phys.
131
(
9
),
094107
(
2009
).
20.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
, “
Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants
,”
Proc. R. Soc. A
373
,
27
56
(
1980
).
21.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
, “
Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions
,”
Proc. R. Soc. A
373
,
57
66
(
1980
).
22.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press, Inc.
,
Orlando, FL, USA
,
2010
).
23.
H.
Wang
,
X.
Gao
, and
J.
Fang
, “
Multiple staggered mesh Ewald: Boosting the accuracy of the smooth particle mesh Ewald method
,”
J. Chem. Theory Comput.
12
,
5596
5608
(
2016
).
24.
R.
Fletcher
,
Practical Methods of Optimization
(John Wiley & Sons, 1980).
25.
D. E.
King
, “
Dlib-ml: A machine learning toolkit
,”
J. Mach. Learn Res.
10
,
1755
1758
(
2009
).
26.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
27.
X.
Gao
,
J.
Fang
, and
H.
Wang
, “
Sampling the isothermal-isobaric ensemble by Langevin dynamics
,”
J. Chem. Phys.
144
(
12
),
124113
(
2016
).
28.

The evaluation of Kaiser-Bessel basis requires a square root and a hyperbolic sine function, which are usually much more expensive than the polynomials. It should be noted that in the productive codes, the Kaiser-Bessel basis is usually implemented by cubic interpolation of tabulated values; thus, each evaluation needs as many floating point operations as the optimal basis.

You do not currently have access to this content.