The primal definition of first-order non-adiabatic couplings among electronic states relies on the knowledge of how electronic wavefunctions vary with nuclear coordinates. However, the non-adiabatic coupling between two electronic states can be obtained in the vicinity of a conical intersection from energies only, as this vector spans the branching plane along which degeneracy is lifted to first order. The gradient difference and derivative coupling are responsible of the two-dimensional cusp of a conical intersection between both potential-energy surfaces and can be identified to the non-trivial eigenvectors of the second derivative of the square energy difference, as first pointed out in Köppel and Schubert [Mol. Phys. 104(5-7), 1069 (2006)]. Such quantities can always be computed in principle for the cost of two numerical Hessians in the worst-case scenario. Analytic-derivative techniques may help in terms of accuracy and efficiency but also raise potential traps due to singularities and ill-defined derivatives at degeneracies. We compare here two approaches, one fully numerical, the other semianalytic, where analytic gradients are available but Hessians are not, and investigate their respective conditions of applicability. Benzene and 3-hydroxychromone are used as illustrative application cases. It is shown that non-adiabatic couplings can thus be estimated with decent accuracy in regions of significant size around conical intersections. This procedure is robust and could be useful in the context of on-the-fly non-adiabatic dynamics or be used for producing model representations of intersecting potential energy surfaces with complete obviation of the electronic wavefunctions.

1.
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
,
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
(
World Scientific
,
Singapore
,
2004
).
2.
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
,
Conical Intersections: Theory, Computation and Experiment
(
World Scientific
,
Hackensack, NJ
,
2011
).
3.
M.
Baer
,
Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections
(
Wiley
,
Hoboken, NJ
,
2006
).
4.
E. R.
Davidson
,
J. Am. Chem. Soc.
99
(
2
),
397
402
(
1977
).
5.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
(
3
),
1862
1876
(
1991
).
6.
M. J.
Bearpark
,
M. A.
Robb
, and
H. B.
Schlegel
,
Chem. Phys. Lett.
223
(
3
),
269
274
(
1994
).
7.
S.
Ruiz-Barragan
,
M. A.
Robb
, and
L.
Blancafort
,
J. Chem. Theory Comput.
9
(
3
),
1433
1442
(
2013
).
8.
S.
Ruiz-Barragan
,
K.
Morokuma
, and
L.
Blancafort
,
J. Chem. Theory Comput.
11
(
4
),
1585
1594
(
2015
).
9.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
246
(
1984
).
10.
G. A.
Worth
and
L. S.
Cederbaum
,
Annu. Rev. Phys. Chem.
55
,
127
158
(
2004
).
11.
G. A.
Worth
,
M. A.
Robb
, and
B.
Lasorne
,
Mol. Phys.
106
(
16-18
),
2077
2091
(
2008
).
12.
G. A.
Worth
,
H. D.
Meyer
,
H.
Köppel
,
L. S.
Cederbaum
, and
I.
Burghardt
,
Int. Rev. Phys. Chem.
27
(
3
),
569
606
(
2008
).
13.
H.-D.
Meyer
,
F.
Gatti
, and
G.
Worth
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
(
Wiley-VCH
,
Weinheim
,
2009
).
14.
B.
Lasorne
,
G. A.
Worth
, and
M. A.
Robb
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
3
),
460
475
(
2011
).
15.
F.
Gatti
,
Molecular Quantum Dynamics: From Theory to Applications
(
Springer-Verlag
,
Berlin, Heidelberg
,
2014
).
16.
F.
Gatti
,
B.
Lasorne
,
H.-D.
Meyer
, and
A.
Nauts
,
Applications of Quantum Dynamics in Chemistry
(
Springer International Publishing
,
Cham
,
2017
).
17.
B. H.
Lengsfield
and
D. R.
Yarkony
,
Adv. Chem. Phys.
82
,
1
71
(
1992
).
18.
K. L.
Bak
,
P.
Jorgensen
,
H. J. A.
Jensen
,
J.
Olsen
, and
T.
Helgaker
,
J. Chem. Phys.
97
(
10
),
7573
7584
(
1992
).
19.
I. F.
Galvan
,
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
,
J. Chem. Theory Comput.
12
(
8
),
3636
3653
(
2016
).
20.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
(
16
),
7322
7329
(
2004
).
21.
T.
Ichino
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
130
(
17
),
174105
(
2009
).
22.
A.
Tajti
and
P. G.
Szalay
,
J. Chem. Phys.
131
(
12
),
124104
(
2009
).
23.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martinez
,
J. Phys. Chem. A
116
(
11
),
2808
2818
(
2012
).
24.
T.
Mori
and
S.
Kato
,
Chem. Phys. Lett.
476
(
1-3
),
97
100
(
2009
).
25.
S.
Fatehi
,
E.
Alguire
,
Y. H.
Shao
, and
J. E.
Subotnik
,
J. Chem. Phys.
135
(
23
),
234105
(
2011
).
26.
V.
Chernyak
and
S.
Mukamel
,
J. Chem. Phys.
112
(
8
),
3572
3579
(
2000
).
27.
I.
Tavernelli
,
E.
Tapavicza
, and
U.
Rothlisberger
,
J. Chem. Phys.
130
(
12
),
124107
(
2009
).
28.
I.
Tavernelli
,
B. F. E.
Curchod
,
A.
Laktionov
, and
U.
Rothlisberger
,
J. Chem. Phys.
133
(
19
),
194104
(
2010
).
29.
R.
Send
and
F.
Furche
,
J. Chem. Phys.
132
(
4
),
044107
(
2010
).
30.
E.
Tapavicza
,
G. D.
Bellchambers
,
J. C.
Vincent
, and
F.
Furche
,
Phys. Chem. Chem. Phys.
15
(
42
),
18336
18348
(
2013
).
31.
Q.
Ou
,
S.
Fatehi
,
E.
Alguire
,
Y. H.
Shao
, and
J. E.
Subotnik
,
J. Chem. Phys.
141
(
2
),
024114
(
2014
).
32.
Q.
Ou
,
G. D.
Bellchambers
,
F.
Furche
, and
J. E.
Subotnik
,
J. Chem. Phys.
142
(
6
),
064114
(
2015
).
33.
Z. D.
Li
and
W. J.
Liu
,
J. Chem. Phys.
141
(
1
),
014110
(
2014
).
34.
Z. D.
Li
,
B. B.
Suo
, and
W. J.
Liu
,
J. Chem. Phys.
141
(
24
),
244105
(
2014
).
35.
X.
Zhang
and
J. M.
Herbert
,
J. Chem. Phys.
141
(
6
),
064104
(
2014
).
36.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
Martinez
,
Mol. Phys.
104
(
5-7
),
1039
1051
(
2006
).
37.
J.
Schirmer
and
A.
Dreuw
,
Phys. Rev. A
75
(
2
),
022513
(
2007
).
38.
S.
Gozem
,
F.
Melaccio
,
A.
Valentini
,
M.
Filatov
,
M.
Huix-Rotllant
,
N.
Ferre
,
L.
Manuel Frutos
,
C.
Angeli
,
A. I.
Krylov
,
A. A.
Granovsky
,
R.
Lindh
, and
M.
Olivucci
,
J. Chem. Theory Comput.
10
(
8
),
3074
3084
(
2014
).
39.
B. F. E.
Curchod
,
U.
Rothlisberger
, and
I.
Tavernelli
,
ChemPhysChem
14
(
7
),
1314
1340
(
2013
).
40.
F.
Cordova
,
L. J.
Doriol
,
A.
Ipatov
,
M. E.
Casida
,
C.
Filippi
, and
A.
Vela
,
J. Chem. Phys.
127
(
16
),
164111
(
2007
).
41.
C.
Ciminelli
,
G.
Granucci
, and
M.
Persico
,
Chem. - Eur. J.
10
(
9
),
2327
2341
(
2004
).
42.
B. G.
Levine
,
J. D.
Coe
, and
T. J.
Martinez
,
J. Phys. Chem. B
112
(
2
),
405
413
(
2008
).
43.
T. W.
Keal
,
A.
Koslowski
, and
W.
Thiel
,
Theor. Chem. Acc.
118
(
5-6
),
837
844
(
2007
).
44.
S.
Maeda
,
K.
Ohno
, and
K.
Morokuma
,
J. Chem. Theory Comput.
6
(
5
),
1538
1545
(
2010
).
45.
R. G.
Pearson
,
J. Am. Chem. Soc.
91
(
18
),
4947
4955
(
1969
).
46.
L.
Salem
,
Chem. Phys. Lett.
3
(
2
),
99
101
(
1969
).
47.
I. B.
Bersuker
,
N. B.
Balabanov
,
D.
Pekker
, and
J. E.
Boggs
,
J. Chem. Phys.
117
(
23
),
10478
10486
(
2002
).
48.
J. A.
Kammeraad
and
P. M.
Zimmerman
,
J. Phys. Chem. Lett.
7
(
24
),
5074
5079
(
2016
).
49.
H.
Köppel
and
B.
Schubert
,
Mol. Phys.
104
(
5-7
),
1069
1079
(
2006
).
50.
O. E.
Alon
and
L. S.
Cederbaum
,
Phys. Rev. B
68
(
3
),
033105
(
2003
).
51.
C. A.
Mead
,
J. Chem. Phys.
78
(
2
),
807
814
(
1983
).
52.
D. R.
Yarkony
,
J. Phys. Chem. A
101
(
23
),
4263
4270
(
1997
).
53.
E. B.
Wilson
,
P. C.
Cross
, and
J. C.
Decius
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
McGraw-Hill Book Co.
,
New York
,
1955
).
54.
G.
Pasin
,
F.
Gatti
,
C.
Iung
, and
H. D.
Meyer
,
J. Chem. Phys.
124
(
19
),
194304
(
2006
).
55.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
56.
I. J.
Palmer
,
I. N.
Ragazos
,
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
J. Am. Chem. Soc.
115
(
2
),
673
682
(
1993
).
57.
A.
Perveaux
,
M.
Lorphelin
,
B.
Lasorne
, and
D.
Lauvergnat
,
Phys. Chem. Chem. Phys.
19
(
9
),
6579
6593
(
2017
).
You do not currently have access to this content.