The hydrogen transfer reaction catalysed by soybean lipoxygenase (SLO) has been the focus of intense study following observations of a high kinetic isotope effect (KIE). Today high KIEs are generally thought to indicate departure from classical rate theory and are seen as a strong signature of tunnelling of the transferring particle, hydrogen or one of its isotopes, through the reaction energy barrier. In this paper, we build a qualitative quantum rate model with few free parameters that describes the dynamics of the transferring particle when it is exposed to energetic potentials exerted by the donor and the acceptor. The enzyme’s impact on the dynamics is modelled by an additional energetic term, an oscillatory contribution known as “gating.” By varying two key parameters, the gating frequency and the mean donor-acceptor separation, the model is able to reproduce well the KIE data for SLO wild-type and a variety of SLO mutants over the experimentally accessible temperature range. While SLO-specific constants have been considered here, it is possible to adapt these for other enzymes.

1.
J. M.
Berg
,
J. L.
Tymoczko
,
G. J.
Gatto
, Jr.
, and
L.
Stryer
,
Biochemistry
, 8th ed. (W. H. Freeman,
San Francisco
,
2015
).
2.
D.
Edwards
,
D. C.
Lohmann
, and
R.
Wolfenden
,
J. Am. Chem. Soc.
134
,
525
(
2012
).
3.
K.
Hult
and
P.
Berglund
,
Curr. Opin. Biotechnol.
14
,
395
(
2003
).
4.
H.
Eyring
and
A. E.
Stearn
,
Chem. Rev.
24
,
253
(
1939
).
5.
C. C.
Moser
,
C. C.
Page
, and
P. L.
Dutton
,
Philos. Trans. R. Soc., B
361
,
1295
(
2006
).
6.
E.
Hatcher
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
126
,
5763
(
2004
).
7.
E.
Hatcher
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
129
,
187
(
2007
).
8.
A. V.
Soudackov
,
E.
Hatcher
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
122
,
014505
(
2005
).
9.
S. J.
Edwards
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Chem. Phys. B
114
,
6653
(
2010
).
10.
A. V.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
143
,
194101
(
2015
).
11.
S.
Hu
,
S. C.
Sharma
,
A. D.
Scouras
,
A. V.
Soudackov
,
C. A. M.
Carr
,
S.
Hammes-Schiffer
,
T.
Alber
, and
J. P.
Klinman
,
J. Am. Chem. Soc.
136
,
8157
(
2014
).
12.
A. V.
Soudackov
and
S.
Hammes-Schiffer
,
Faraday Discuss.
195
,
171
(
2016
).
13.
M. J.
Knapp
,
K.
Rickert
, and
J. P.
Klinman
,
J. Am. Chem. Soc.
124
,
3865
(
2002
).
14.
M. M. H.
Olsson
,
P. E. H.
Siegbahn
, and
A.
Warshel
,
J. Am. Chem. Soc.
126
,
2820
(
2004
).
15.
Y.
Cha
,
C. J.
Murray
, and
J. P.
Klinman
,
Science
243
,
1325
(
1989
).
16.
S.
Borman
,
C&EN Archives
82
(
8
),
35
39
(
2004
).
18.
P.
Ball
,
Nature
431
,
396
(
2004
).
19.
R. K.
Allemann
and
N.
Scrutton
,
Quantum Tunnelling in Enzyme-Catalysed Reactions
(
The Royal Society of Chemistry
,
2009
).
20.
J. P.
Bothma
,
J. B.
Gilmore
, and
R. H.
McKenzie
,
New J. Phys.
12
,
055002
(
2010
).
21.
J. P.
Layfield
and
S.
Hammes-Schiffer
,
Chem. Rev.
114
,
3466
(
2014
).
22.
S.
Hammes-Schiffer
and
A. V.
Soudackov
,
J. Phys. Chem. B
112
,
14108
(
2008
).
23.
W. J.
Bruno
and
W.
Bialek
,
Biophys. J.
63
,
689
(
1992
).
24.
S. T.
Prigge
,
J. C.
Boyington
,
B. J.
Gaffney
, and
L. M.
Amzel
,
Proteins
24
,
275
(
1996
).
25.
S. T.
Prigge
,
J. C.
Boyington
,
M.
Faig
,
K. S.
Doctor
,
B. J.
Gaffney
, and
L. M.
Amzel
,
Biochimie
79
,
629
(
1997
).
26.
M. K.
Yu
,
P. J.
Moos
,
P.
Cassidy
,
M.
Wade
, and
F. A.
Fitzpatrick
,
J. Biol. Chem.
279
,
28028
(
2004
).
27.
N.
Rioux
and
A.
Castonguay
,
Carcinogenesis
19
,
1393
(
1998
).
28.
T. W.
Moody
,
J.
Leyton
,
A.
Martinez
,
S.
Hong
,
A.
Malkinson
, and
J. L.
Mulshine
,
Exp. Lung Res.
24
,
617
(
1998
).
29.
M. H.
Glickman
,
J. S.
Wiseman
, and
J. P.
Klinman
,
J. Am. Chem. Soc.
116
,
793
(
1994
).
30.
M. P.
Meyer
,
D. R.
Tomchick
, and
J. P.
Klinman
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
1146
(
2008
).
31.
W. W.
Cleland
,
M. H.
O’Leary
, and
D. B.
Northrop
,
Isotope Effects on Enzyme-Catalyzed Reactions
(
University Park
,
Baltimore
,
1977
).
32.
R. P.
Bell
,
The Tunnel Effect in Chemistry
(
Chapman & Hall
,
1980
).
33.

The WKB approximation provides a good estimate of the tunnelling probability through a barrier when /S1. In this case the tunnelling probability is exp(2S/). The action S=ab2m[V(x)E]dx is for a one-dimensional potential V(x) that has a barrier in the range axb, and the incident particle has energy E and mass m. For the purposes of an order estimation, let us assume the barrier is rectangular, i.e. V(x) = V for axb and zero otherwise. Then S=(ba)2m[VE]. Typical parameters for the transfer distance ba1 Å and for the activation energy VE1 kcal/mol 1×1020 J (from SLO data in Ref. 13). Hence /S0.1 indicating that the WKB regime is not a very good approximation.

34.
E.
Pollak
,
J. Phys. Chem. B
116
,
12966
(
2012
).
35.
A.
Kuznetsov
and
J.
Ulstrup
,
Can. J. Chem.
77
,
1085
(
1999
).
36.
J. S.
Mincer
and
S. D.
Schwartz
,
J. Chem. Phys.
120
,
7755
(
2004
).
37.
W.
Siebrand
and
Z.
Smedarchina
,
J. Phys. Chem. B
108
,
4185
(
2004
).
38.
S. S.
Iyengar
,
I.
Sumner
, and
J.
Jakowski
,
J. Phys. Chem. B
112
(
25
),
7601
(
2008
).
39.
I.
Sumner
and
S. S.
Iyengar
,
J. Chem. Theory Comput.
6
,
1698
(
2010
).
40.
A. V.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
113
,
2385
(
2000
).
41.
A. V.
Soudackov
and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
5
,
3274
(
2014
).
42.
I.
Tejero
,
M.
Garcia-Viloca
,
A.
González-Lafont
,
J. M.
Llucha
, and
D. M.
York
,
J. Phys. Chem. B
110
,
24708
(
2006
).
43.
J.
Pu
,
J.
Gao
, and
D. G.
Truhlar
,
Chem. Rev.
106
,
3140
(
2006
).
44.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
OUP
,
Oxford
,
2002
).
45.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC Press
,
2007
).
46.
S.
Hu
,
A. V.
Soudackov
,
S.
Hammes-Schiffer
, and
J. P.
Klinman
,
ACS Catal.
7
,
3569
(
2017
).
47.
S.
Hay
,
C. R.
Pudney
, and
N. S.
Scrutton
,
FEBS J.
276
,
3930
(
2008
).
You do not currently have access to this content.