Within the semiclassical Boltzmann transport theory in the constant relaxation-time approximation, we perform an ab initio study of the transport properties of selected systems, including crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to analytically evaluate band velocities as well as to access full and range-separated hybrid functionals (such as B3LYP, PBE0, or HSE06) at a moderate computational cost. As a consequence of the analytical derivative, our approach is computationally efficient and does not suffer from problems related to band crossings. We investigate and compare the performance of a variety of hybrid functionals in evaluating Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals other than providing more realistic bandgaps—as expected—lead to larger bandwidths and hence allow for a better estimate of transport properties, also in metallic systems. As a nanostructure prototype, we also investigate conductivity in boron-nitride (BN) substituted graphene, in which nanoribbons (nanoroads) alternate with BN ones.

1.
J. P.
Heremans
,
M. S.
Dresselhaus
,
L. E.
Bell
, and
D. T.
Morelli
,
Nat. Nanotech.
8
,
471
(
2013
).
2.
Z.
Tian
,
S.
Lee
, and
G.
Chen
,
Ann. Rev. Heat Transfer
17
,
425
(
2014
).
3.
J. R.
Sootsman
,
D. Y.
Chung
, and
M. G.
Kanatzidis
,
Angew. Chem., Int. Ed.
48
,
8616
(
2009
).
4.
G. K. H.
Madsen
and
D. J.
Singh
,
Comput. Phys. Commun.
175
,
67
(
2006
).
5.
G.
Pizzi
,
D.
Volja
,
B.
Kozinsky
,
M.
Fornari
, and
N.
Marzari
,
Comput. Phys. Commun.
185
,
422
(
2014
).
6.
R.
Dovesi
 et al,
Int. J. Quantum Chem.
114
,
1287
(
2014
).
7.
N.
Ashcroft
and
N.
Mermin
,
Solid State Physics
(
Saunders College
,
Philadelphia
,
1976
).
8.
J.
Ziman
,
Principles of the Theory of Solids
(
Cambridge University Press
,
London, England
,
1964
).
9.
G.
Grosso
and
G. P.
Parravicini
,
Solid State Physics
(
Academic Press
,
2000
).
10.
C.
Goupil
, in
Thermodynamics
, edited by
M.
Tadashi
(
InTech
,
2011
), Chap. 13, pp.
275
292
.
11.
12.
13.
H. B.
Callen
,
Phys. Rev.
73
,
1349
(
1948
).
14.
T.-Y.
Wu
,
Int. J. Theor. Phys.
2
,
325
(
1969
).
15.
T. J.
Scheidemantel
,
C.
Ambrosch-Draxl
,
T.
Thonhauser
,
J. V.
Badding
, and
J. O.
Sofo
,
Phys. Rev. B
68
,
125210
(
2003
).
16.
J.
Sofo
and
G.
Mahan
,
Phys. Rev. B
58
,
15620
(
1998
).
17.
V. R.
Saunders
,
C.
Freyria-Fava
,
R.
Dovesi
,
L.
Salasco
, and
C.
Roetti
,
Mol. Phys.
77
,
629
(
1992
).
18.
L.
Maschio
,
B.
Kirtman
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
,
J. Chem. Phys.
139
,
164101
(
2013
).
19.
L.
Maschio
,
B.
Kirtman
,
R.
Orlando
, and
M.
Rérat
,
J. Chem. Phys.
137
,
204113
(
2012
).
20.
B.
Champagne
and
J.-M.
André
,
Int. J. Quantum Chem.
42
,
1009
(
1992
).
21.
P.
Otto
,
F. L.
Gu
, and
J.
Ladik
,
J. Chem. Phys.
110
,
2717
(
1999
).
22.
C. E.
Dykstra
and
P. C.
Jasien
,
Chem. Phys. Lett.
109
,
388
(
1984
).
23.
M.
Ferrero
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
,
J. Comput. Chem.
29
,
1450
(
2008
).
24.
A.
Ferretti
,
G.
Mallia
,
L.
Martin-Samos
,
G.
Bussi
,
A.
Ruini
,
B.
Montanari
, and
N. M.
Harrison
,
Phys. Rev. B
85
,
235105
(
2012
).
25.
R. D.
Dovesi
 et al, “Quantum-mechanical condensed matter simulations with CRYSTAL17” (unpublished).
26.
L.
Maschio
, “Improved convergences in ab initio methods for crystalline solids adopting Gaussian basis sets” (unpublished).
27.
P. A. M.
Dirac
,
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1930
), Vol. 26, pp.
376
385
.
28.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
29.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
Z.
Wu
and
R. E.
Cohen
,
Phys. Rev. B
73
,
235116
(
2006
).
32.
Z.
Wu
and
R. E.
Cohen
,
Phys. Rev. B
78
,
197102
(
2008
).
33.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
34.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
35.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
36.
T.
Bredow
and
A. R.
Gerson
,
Phys. Rev. B
61
,
5194
(
2000
).
37.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
38.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
39.
E.
Weintraub
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
5
,
754
(
2009
).
40.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2005
).
41.
O.
Madelung
,
Semiconductors: Data Handbook
, 3rd ed. (
Springer
,
New York
,
2004
).
42.
J. M.
Crowley
,
J.
Tahir-Kheli
, and
W. A.
Goddard
,
J. Phys. Chem. Lett.
7
,
1198
(
2016
).
43.
J. M.
Crowley
,
J.
Tahir-Kheli
, and
W. A.
Goddard
,
J. Phys. Chem. Lett.
6
,
3792
(
2015
).
44.
B. M.
Goltsman
,
V. A.
Kudinov
, and
I. A.
Smirnov
,
Thermoelectric Semiconductor Materials Based on Bi2Te3
(
Nauka, Moscow, 1972; Army Foreign Science and Technology Center
,
Charlottesville, VA, USA
,
1973
).
45.
K.
Koga
,
K.
Akai
,
K.
Oshiro
, and
M.
Matsuura
,
Phys. Rev. B
71
,
155119
(
2005
).
46.
I.
Aguilera
,
C.
Friedrich
, and
S.
Blügel
,
Phys. Rev. B
88
,
165136
(
2013
).
47.
L.
Maschio
,
M.
Lorenz
,
D.
Pullini
,
M.
Sgroi
, and
B.
Civalleri
,
Phys. Chem. Chem. Phys.
18
,
20270
(
2016
).
48.
P.
D’Amico
,
L.
Agapito
,
A.
Catellani
,
A.
Ruini
,
S.
Curtarolo
,
M.
Fornari
,
M. B.
Nardelli
, and
A.
Calzolari
,
Phys. Rev. B
94
,
165166
(
2016
).

Supplementary Material

You do not currently have access to this content.