Nanoporous supercapacitors play an important role in modern energy storage systems, and their modeling is essential to predict and optimize the charging behaviour. Two classes of models have been developed that consist of finite and infinitely long pores. Here, we show that although both types of models predict qualitatively consistent results, there are important differences emerging due to the finite pore length. In particular, we find that the ion density inside a finite pore is not constant, but increases linearly from the pore entrance to the pore end, where the ions form a strongly layered structure. This hinders a direct quantitative comparison between the two models. In addition, we show that although the ion density between the electrodes changes appreciably with the applied potential, this change has a minor effect on charging. Our simulations also reveal a complex charging behaviour, which is adsorption-driven at high voltages, but it is dominated either by co-ion desorption or by adsorption of both types of ions at low voltages, depending on the ion concentration.

1.
J. R.
Miller
and
P.
Simon
, “
Materials science-electrochemical capacitors for energy management
,”
Science
321
,
651
652
(
2008
).
2.
P.
Simon
and
Y.
Gogotsi
, “
Capacitive energy storage in nanostructured carbon-electrolyte systems
,”
Acc. Chem. Res.
46
,
1094
1103
(
2013
).
3.
E.
Raymundo-Piñero
,
K.
Kierczek
,
J.
Machnikowski
, and
F.
Béguin
, “
Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes
,”
Carbon
44
,
2498
2507
(
2006
).
4.
J.
Chmiola
,
G.
Yushin
,
Y.
Gogotsi
,
C.
Portet
,
P.
Simon
, and
P. L.
Taberna
, “
Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer
,”
Science
313
,
1760
(
2006
).
5.
C.
Largeot
,
C.
Portet
,
J.
Chmiola
,
P.-L.
Taberna
,
Y.
Gogotsi
, and
P.
Simon
, “
Relation between the ion size and pore size for an electric double-layer capacitor
,”
J. Am. Chem. Soc.
130
,
2730
2731
(
2008
).
6.
S.
Kondrat
,
C. R.
Pérez
,
V.
Presser
,
Y.
Gogotsi
, and
A. A.
Kornyshev
, “
Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors
,”
Energy Environ. Sci.
5
,
6474
(
2012
).
7.
S.
Kondrat
and
A.
Kornyshev
, “
Superionic state in double-layer capacitors with nanoporous electrodes
,”
J. Phys.: Condens. Matter
23
,
022201
(
2011
).
8.
S.
Kondrat
,
N.
Georgi
,
M. V.
Fedorov
, and
A. A.
Kornyshev
, “
A superionic state in nano-porous double-layer capacitors: Insights from Monte Carlo simulations
,”
Phys. Chem. Chem. Phys.
13
,
11359
11366
(
2011
).
9.
C. C.
Rochester
,
A. A.
Lee
,
G.
Pruessner
, and
A. A.
Kornyshev
, “
Interionic interactions in conducting nanoconfinement
,”
ChemPhysChem
14
,
4121
(
2013
).
10.
A.
Goduljan
,
F.
Juarez
,
L.
Mohammadzadeh
,
P.
Quaino
,
E.
Santos
, and
W.
Schmickler
, “
Screening of ions in carbon and gold nanotubes—A theoretical study
,”
Electrochem. Commun.
45
,
48
51
(
2014
).
11.
L.
Mohammadzadeh
,
A.
Goduljan
,
F.
Juarez
,
P.
Quaino
,
E.
Santos
, and
W.
Schmickler
, “
Nanotubes for charge storage-towards an atomistic model
,”
Electrochim. Acta
162
,
11
16
(
2015
).
12.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
, “
Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte
,”
Phys. Chem. Chem. Phys.
12
,
170
(
2010
).
13.
G.
Feng
and
P. T.
Cummings
, “
Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size
,”
J. Phys. Chem. Lett.
2
,
2859
2864
(
2011
).
14.
P.
Wu
,
J.
Huang
,
V.
Meunier
,
B.
Sumpter
, and
R.
Qiao
, “
Voltage dependent charge storage modes and capacity in sub-nanometer pores
,”
J. Phys. Chem. Lett.
3
,
1732
1737
(
2012
).
15.
J.
Vatamanu
,
Z.
Hu
,
D.
Bedrov
,
C.
Perez
, and
Y.
Gogotsi
, “
Increasing energy storage in electrochemical capacitors with ionic liquid electrolytes and nanostructured carbon electrodes
,”
J. Phys. Chem. Lett.
4
,
2829
(
2013
).
16.
J.
Vatamanu
,
M.
Vatamanu
, and
D.
Bedrov
, “
Non-faradic energy storage by room temperature ionic liquids in nanoporous electrodes
,”
ACS Nano
9
,
5999
(
2015
).
17.
Y.
Shim
and
H. J.
Kim
, “
Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study
,”
ACS Nano
4
,
2345
(
2010
).
18.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
, “
On the molecular origin of supercapacitance in nanoporous carbon electrodes
,”
Nat. Mater.
11
,
306
(
2012
).
19.
R.
Burt
,
K.
Breitsprecher
,
B.
Daffos
,
P.-L.
Taberna
,
P.
Simon
,
G.
Birkett
,
X. S.
Zhao
,
C.
Holm
, and
M.
Salanne
, “
Capacitance of nanoporous carbon-based supercapacitors is a trade-off between the concentration and the separability of the ions
,”
J. Phys. Chem. Lett.
7
,
4015
(
2016
).
20.
H.-Q.
Li
,
J.-Y.
Luo
,
X.-F.
Zhou
,
C.-Z.
Yu
, and
Y.-Y.
Xia
, “
An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications
,”
J. Electrochem. Soc.
154
,
A731
A736
(
2007
).
21.
B.
Dyatkin
,
O.
Gogotsi
,
B.
Malinovskiy
,
Y.
Zozulya
,
P.
Simon
, and
Y.
Gogotsi
, “
High capacitance of coarse-grained carbide derived carbon electrodes
,”
J. Power Sources
306
,
32
41
(
2016
).
22.

While the electrodes with long well-defined slit pores exist,33,34 extended long pores might not be present in some porous materials, such as CDCs, which consist of interconnected networks of different pores (see, e.g., Ref. 35). However, although such a network can be described as a collection of shorter pores, the ionic liquid is nevertheless mainly present deeply in the porous carbons and far from the contact with the bulk electrolyte or pore closings. In this sense, infinitely extended pores can still be considered as good models for these porous materials too. We note, however, that such pore networks and surface roughness may lead to less structured ionic liquid configurations inside the pores, which can influence the charging behaviour.

23.
K.
Kiyohara
and
K.
Asaka
, “
Monte Carlo simulation of porous electrodes in the constant voltage ensemble
,”
J. Phys. Chem. C
111
,
15903
15909
(
2007
).
24.
K.
Kiyohara
,
T.
Sugino
, and
K.
Asaka
, “
Electrolytes in porous electrodes: Effects of the pore size and the dielectric constant of the medium
,”
J. Chem. Phys.
132
,
144705
(
2010
).
25.
K.
Kiyohara
,
T.
Sugino
, and
K.
Asaka
, “
Phase transition in porous electrodes
,”
J. Chem. Phys.
134
,
154710
(
2011
).
26.
D. E.
Jiang
,
Z. H.
Jin
, and
J. Z.
Wu
, “
Oscillation of capacitance inside nanopores
,”
Nano Lett.
11
,
5373
5377
(
2011
).
27.
D.
Jiang
and
J.
Wu
, “
Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode
,”
Nanoscale
6
,
5545
(
2014
).
28.
M.
Dudka
,
S.
Kondrat
,
A.
Kornyshev
, and
G.
Oshanin
, “
Phase behaviour and structure of a superionic liquid in nonpolarized nanoconfinement
,”
J. Phys.: Condens. Matter
28
,
464007
(
2016
).
29.
A. A.
Kornyshev
, “
The simplest model of charge storage in single file metallic nanopores
,”
Faraday Discuss.
164
,
117
133
(
2013
).
30.
A. A.
Lee
,
S.
Kondrat
, and
A. A.
Kornyshev
, “
Single-file charge storage in conducting nanopores
,”
Phys. Rev. Lett.
113
,
048701
(
2014
).
31.
W.
Schmickler
, “
A simple model for charge storage in a nanotube
,”
Electochim. Acta
173
,
91
95
(
2015
).
32.
C. C.
Rochester
,
S.
Kondrat
,
G.
Pruessner
, and
A. A.
Kornyshev
, “
Charging ultra-nanoporous electrodes with size-asymmetric ions assisted by apolar solvent
,”
J. Phys. Chem. C
120
,
16042
(
2016
).
33.
X.
Yang
,
C.
Cheng
,
Y.
Wang
,
L.
Qiu
, and
D.
Li
, “
Liquid-mediated dense integration of graphene materials for compact capacitive energy storage
,”
Science
341
,
534
537
(
2013
).
34.
M. R.
Lukatskaya
,
O.
Mashtalir
,
C. E.
Ren
,
Y.
Dall’Agnese
,
P.
Rozier
,
P. L.
Taberna
,
M.
Naguib
,
P.
Simon
,
M. W.
Barsoum
, and
Y.
Gogotsi
, “
Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide
,”
Science
341
,
1502
(
2013
).
35.
M.
Oschatz
,
P.
Pre
,
S.
Dörfler
,
W.
Nickel
,
P.
Beaunier
,
J.-N.
Rouzaud
,
C.
Fischer
,
E.
Brunner
, and
S.
Kaskel
, “
Nanostructure characterization of carbide-derived carbons by morphological analysis of transmission electron microscopy images combined with physisorption and Raman spectroscopy
,”
Carbon
105
,
314
322
(
2016
).
36.
J.
Wu
and
Z.
Li
, “
Density-functional theory for complex fluids
,”
Annu. Rev. Phys. Chem.
58
,
85
(
2007
).
37.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
(
1971
).
38.
A. A.
Lee
,
D.
Vella
,
A.
Goriely
, and
S.
Kondrat
, “
Capacitance-power-hysteresis trilemma in nanoporous supercapacitors
,”
Phys. Rev. X
6
,
021034
(
2016
).
39.
See http://towhee.sourceforge.net/ for MCCCS Towhee.
40.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
41.
ESPResSo—Extensible simulation package for research on soft matter
,” http://espressomd.org, visited on 07/28/2016.
42.
H. J.
Limbach
,
A.
Arnold
,
B. A.
Mann
, and
C.
Holm
, “
ESPResSo—An extensible simulation package for research on soft matter systems
,”
Comput. Phys. Commun.
174
,
704
727
(
2006
).
43.
A.
Arnold
,
O.
Lenz
,
S.
Kesselheim
,
R.
Weeber
,
F.
Fahrenberger
,
D.
Roehm
,
P.
Košovan
, and
C.
Holm
, “
ESPResSo 3.1—Molecular dynamics software for coarse-grained models
,” in
Meshfree Methods for Partial Differential Equations VI
, Lecture Notes in Computational Science and Engineering, edited by
M.
Griebel
and
M. A.
Schweitzer
(
Springer
,
2013
), Vol. 89, pp.
1
23
.
44.
S.
Tyagi
,
M.
Süzen
,
M.
Sega
,
M.
Barbosa
,
S. S.
Kantorovich
, and
C.
Holm
, “
An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries
,”
J. Chem. Phys.
132
,
154112
(
2010
).
45.
S.
Kesselheim
,
M.
Sega
, and
C.
Holm
, “
Applying ICC* to DNA translocation. Effect of dielectric boundaries
,”
Comput. Phys. Commun.
182
,
33
35
(
2011
).
46.
A.
Arnold
,
K.
Breitsprecher
,
F.
Fahrenberger
,
S.
Kesselheim
,
O.
Lenz
, and
C.
Holm
, “
Efficient algorithms for electrostatic interactions including dielectric contrasts
,”
Entropy
15
,
4569
4588
(
2013
).
47.
A.
Arnold
,
F.
Fahrenberger
,
C.
Holm
,
O.
Lenz
,
M.
Bolten
,
H.
Dachsel
,
R.
Halver
,
I.
Kabadshow
,
F.
Gähler
,
F.
Heber
,
J.
Iseringhausen
,
M.
Hofmann
,
M.
Pippig
,
D.
Potts
, and
G.
Sutmann
, “
Comparison of scalable fast methods for long-range interactions
,”
Phys. Rev. E
88
,
063308
(
2013
).
48.
W. H.
Press
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
2007
).
49.
S.
Kondrat
and
A.
Kornyshev
, “
Pressing a spring: What does it take to maximize the energy storage in nanoporous supercapacitors?
,”
Nanoscale Horiz.
1
,
45
52
(
2016
).
50.
H.
Kato
,
K.
Nishikawa
,
H.
Murai
,
T.
Morita
, and
Y.
Koga
, “
Chemical potentials in aqueous solutions of some ionic liquids with the 1-ethyl-3-methylimidazolium cation
,”
J. Phys. Chem. B
112
,
13344
13348
(
2008
).
51.
A. J.
Pak
and
G. S.
Hwang
, “
Charging rate dependence of ion migration and stagnation in ionic-liquid-filled carbon nanopores
,”
J. Phys. Chem. C
120
,
24560
(
2016
).
52.
K.
Breitsprecher
,
K.
Szuttor
, and
C.
Holm
, “
Electrode models for ionic liquid-based capacitors
,”
J. Phys. Chem. C
119
,
22445
22451
(
2015
).
53.
A. C.
Forse
,
C.
Merlet
,
J. M.
Griffin
, and
C. P.
Grey
, “
New perspectives on the charging mechanisms of supercapacitors
,”
J. Am. Chem. Soc.
138
,
5731
5744
(
2016
).
54.
C.
Lian
,
H.
Liu
,
D.
Henderson
, and
J.
Wu
, “
Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
,”
J. Phys.: Condens. Matter
28
,
414005
(
2016
).
55.
S.
Kondrat
and
A.
Kornyshev
, “
Charging dynamics and optimization of nanoporous supercapacitors
,”
J. Phys. Chem. C
117
,
12399
12406
(
2013
).
56.
S.
Kondrat
,
P.
Wu
,
R.
Qiao
, and
A.
Kornyshev
, “
Accelerating charging dynamics in subnanometre pores
,”
Nat. Mater.
13
,
387
(
2014
).
57.
A. A.
Lee
,
S.
Kondrat
,
G.
Oshanin
, and
A. A.
Kornyshev
, “
Charging dynamics of supercapacitors with narrow cylindrical nanopores
,”
Nanotechnology
25
,
315401
(
2014
).
58.
K.
Breitsprecher
,
P.
Košovan
, and
C.
Holm
, “
Coarse grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects
,”
J. Phys.: Condens. Matter
26
,
284108
(
2014
).
59.
K.
Breitsprecher
,
P.
Košovan
, and
C.
Holm
, “
Coarse grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization
,”
J. Phys.: Condens. Matter
26
,
284114
(
2014
).

Supplementary Material

You do not currently have access to this content.