A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.

1.
A. V.
Akimov
and
O. V.
Prezhdo
,
Chem. Rev.
115
,
5797
(
2015
).
2.
I. S.
Ufimtsev
,
N.
Luehr
, and
T. J.
Martinez
,
J. Phys. Chem. Lett.
2
,
1789
(
2011
).
3.
Linear-Scaling Techniques in Computational Chemistry and Physics
, edited by
R.
Zalesny
,
M. G.
Papadopoulos
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer
,
Berlin
,
2011
).
4.
Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology
, edited by
J. R.
Reimers
(
Wiley
,
New York
,
2011
).
5.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
6.
P.
Otto
and
J.
Ladik
,
Chem. Phys.
8
,
192
(
1975
).
7.
J.
Gao
,
J. Phys. Chem. B
101
,
657
(
1997
).
8.
P.
Söderhjelm
and
U.
Ryde
,
J. Phys. Chem. A
113
,
617
(
2009
).
9.
M. A.
Collins
,
Phys. Chem. Chem. Phys.
14
,
7744
(
2012
).
10.
H.
Yu
,
H. R.
Leverentz
,
P.
Bai
,
J. I.
Siepmann
, and
D. G.
Truhlar
,
J. Phys. Chem. Lett.
5
,
660
(
2014
).
11.
X. H.
Chen
,
Y. K.
Zhang
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
122
,
184105
(
2005
).
12.
N.
Sahu
and
S. R.
Gadre
,
Acc. Chem. Res.
47
,
2739
(
2014
).
13.
L.
Huang
and
L.
Massa
,
Future Med. Chem.
4
,
1479
(
2012
).
14.
J.
Liu
and
J. M.
Herbert
,
J. Chem. Theory Comput.
12
,
572
(
2016
).
15.
J.
Liu
,
J. Z. H.
Zhang
, and
X.
He
,
Phys. Chem. Chem. Phys.
18
,
1864
(
2016
).
17.
X.
He
and
K. M.
Merz
, Jr.
,
J. Chem. Theory Comput.
6
,
405
(
2010
).
18.
T. E.
Exner
and
P. G.
Mezey
,
J. Comput. Chem.
24
,
1980
(
2003
).
19.
T.
Shimazaki
,
K.
Kitaura
,
D. G.
Fedorov
, and
T.
Nakajima
,
J. Chem. Phys.
146
,
084109
(
2017
).
20.
Y.
Aoki
and
A.
Imamura
,
J. Chem. Phys.
97
,
8432
(
1992
).
21.
C.
Lee
and
W.
Yang
,
J. Chem. Phys.
96
,
2408
(
1992
).
22.
T.
Akama
,
M.
Kobayashi
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2003
(
2007
).
23.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
24.
D. G.
Fedorov
and
K.
Kitaura
,
J. Phys. Chem. A
111
,
6904
(
2007
).
25.
D. G.
Fedorov
,
T.
Nagata
, and
K.
Kitaura
,
Phys. Chem. Chem. Phys.
14
,
7562
(
2012
).
26.
S.
Tanaka
,
Y.
Mochizuki
,
Y.
Komeiji
,
Y.
Okiyama
, and
K.
Fukuzawa
,
Phys. Chem. Chem. Phys.
16
,
10310
(
2014
).
27.
D. G.
Fedorov
,
T.
Ishida
,
M.
Uebayasi
, and
K.
Kitaura
,
J. Phys. Chem. A
111
,
2722
(
2007
).
28.
Y.
Komeiji
,
Y.
Mochizuki
,
T.
Nakano
, and
H.
Mori
, “
Recent advances in fragment molecular orbital-based molecular dynamics (FMO-MD) simulations
,” in
Molecular Dynamics—Theoretical Developments and Applications in Nanotechnology and Energy
, edited by
L.
Wang
(
Intech
,
2012
), pp.
3
24
.
29.
H.
Sekino
,
Y.
Sengoku
,
S.-I.
Sugiki
, and
N.
Kurita
,
Chem. Phys. Lett.
378
,
589
(
2003
).
30.
Y.
Inadomi
,
T.
Nakano
,
K.
Kitaura
, and
U.
Nagashima
,
Chem. Phys. Lett.
364
,
139
(
2002
).
31.
T.
Watanabe
,
Y.
Inadomi
,
H.
Umeda
,
K.
Fukuzawa
,
S.
Tanaka
,
T.
Nakano
, and
U.
Nagashima
,
J. Comput. Theor. Nanosci.
6
,
1328
(
2009
).
32.
H.
Umeda
,
Y.
Inadomi
,
T.
Watanabe
,
T.
Yagi
,
T.
Ishimoto
,
T.
Ikegami
,
H.
Tadano
,
T.
Sakurai
, and
U.
Nagashima
,
J. Comput. Chem.
31
,
2381
(
2010
).
33.
S.
Tsuneyuki
,
T.
Kobori
,
K.
Akagi
,
K.
Sodeyama
,
K.
Terakura
, and
H.
Fukuyama
,
Chem. Phys. Lett.
476
,
104
(
2009
).
34.
T.
Kobori
,
K.
Sodeyama
,
T.
Otsuka
,
Y.
Tateyama
, and
S.
Tsuneyuki
,
J. Chem. Phys.
139
,
094113
(
2013
).
35.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
131
,
171106
(
2009
).
36.
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
K.
Fukuzawa
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
,
Chem. Phys. Lett.
351
,
475
(
2002
).
37.
D. G.
Fedorov
and
K.
Kitaura
,
Chem. Phys. Lett.
433
,
182
(
2006
).
38.
D. G.
Fedorov
,
J. H.
Jensen
,
R. C.
Deka
, and
K.
Kitaura
,
J. Phys. Chem. A
112
,
11808
(
2008
).
39.
D. G.
Fedorov
,
P. V.
Avramov
,
J. H.
Jensen
, and
K.
Kitaura
,
Chem. Phys. Lett.
477
,
169
(
2009
).
40.
D. G.
Fedorov
,
K.
Kitaura
,
H.
Li
,
J. H.
Jensen
, and
M. S.
Gordon
,
J. Comput. Chem.
27
,
976
(
2006
).
41.
T.
Nagata
,
D. G.
Fedorov
,
H.
Li
, and
K.
Kitaura
,
J. Chem. Phys.
136
,
204112
(
2012
).
42.
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
,
Chem. Phys. Lett.
318
,
614
(
2000
).
43.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
120
,
6832
(
2004
).
44.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
45.
D. G.
Fedorov
,
R. M.
Olson
,
K.
Kitaura
,
M. S.
Gordon
, and
S.
Koseki
,
J. Comput. Chem.
25
,
872
(
2004
).
46.
M.
Suenaga
,
J. Comput. Chem. Jpn.
7
,
33
(
2008
) (in Japanese).
47.
B. M.
Bode
and
M. S.
Gordon
,
J. Mol. Graphics Mod.
16
,
133
(
1998
).
48.
D. G.
Fedorov
,
L. V.
Slipchenko
, and
K.
Kitaura
,
J. Phys. Chem. A
114
,
8742
(
2010
).
49.
H.
Nakata
,
D. G.
Fedorov
,
S.
Yokojima
,
K.
Kitaura
, and
S.
Nakamura
,
J. Chem. Theory Comput.
10
,
3689
(
2014
).
50.
P. V.
Avramov
,
D. G.
Fedorov
,
P. B.
Sorokin
,
S.
Sakai
,
S.
Entani
,
M.
Ohtomo
,
Y.
Matsumoto
, and
H.
Naramoto
,
J. Phys. Chem. Lett.
3
,
2003
(
2012
).
51.
52.
H.
Kruse
and
S.
Grimme
,
J. Chem. Phys.
134
,
154101
(
2012
).
53.
J.-B.
Xia
and
K. W.
Cheah
,
Phys. Rev. B
55
,
15688
(
1997
).
54.
P. V.
Avramov
,
D. G.
Fedorov
,
S.
Irle
,
A. A.
Kuzubov
, and
K.
Morokuma
,
J. Phys. Chem. C
113
,
15964
(
2009
).
55.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
56.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Cosmic Res.
112
,
289
(
2012
).
57.
J.
Autschbach
and
M.
Srebro
,
Acc. Chem. Res.
47
,
2592
(
2014
).
58.
J. P.
Perdew
,
Int. J. Quantum Chem.
28
,
497
(
1985
).
59.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B: Condens. Matter Mater. Phys.
53
,
3764
(
1996
).
60.
E.
Rudberg
,
E. H.
Rubensson
, and
P.
Sałek
,
J. Chem. Theory Comput.
7
,
340
(
2011
).
61.
J.
Antony
and
S.
Grimme
,
J. Comput. Chem.
33
,
1730
(
2012
).
62.
H. J.
Kulik
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martinez
,
J. Phys. Chem. B
116
,
12501
(
2012
).
63.
E.
Rudberg
,
J. Phys.: Condens. Matter
24
,
072202
(
2012
).
64.
G.
Lever
,
D. J.
Cole
,
N. D. M.
Hine
,
P. D.
Haynes
, and
M. C.
Payne
,
J. Phys.: Condens. Matter
25
,
152101
(
2013
).
65.
Y.
Nishimoto
and
D. G.
Fedorov
,
Phys. Chem. Chem. Phys.
18
,
22047
(
2016
).
66.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
,
J. Chem. Theory Comput.
10
,
4801
(
2014
).
67.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
,
J. Chem. Theory Comput.
9
,
338
(
2013
).
68.
M.
Gaus
,
X.
Lu
,
M.
Elstner
, and
Q.
Cui
,
J. Chem. Theory Comput.
10
,
1518
(
2014
).
69.
Y.
Nishimoto
and
D. G.
Fedorov
,
J. Comput. Chem.
38
,
406
(
2017
).
70.
K.
Yasuda
and
D.
Yamaki
,
J. Chem. Phys.
125
,
154101
(
2006
).
71.
D. G.
Fedorov
and
K.
Kitaura
,
J. Comput. Chem.
28
,
222
(
2007
).
72.
H.
Nishioka
and
K.
Ando
,
J. Chem. Phys.
134
,
204109
(
2011
).
73.
H.
Kitoh-Nishioka
and
K.
Ando
,
J. Phys. Chem. B
116
,
12933
(
2012
).
74.
H.
Kitoh-Nishioka
and
K.
Ando
,
Chem. Phys. Lett.
621
,
96
(
2015
).
75.
H.
Kitoh-Nishioka
and
K.
Ando
,
J. Chem. Phys.
145
,
114103
(
2016
).
76.
R.
Stowasser
and
R.
Hoffmann
,
J. Am. Chem. Soc.
121
,
3414
(
1999
).
77.
B.
Nebgen
and
O. V.
Prezhdo
,
J. Phys. Chem. A
120
,
7205
(
2016
).
You do not currently have access to this content.