Using Born-Oppenheimer molecular dynamics (BOMD) with density functional theory, transition-state (TS) calculations, and the quantitative energy decomposition analysis (EDA), we examined the mechanism of H2-liberation from LB—H(+) + (−)H—LA ion-pair, 1, in which the Lewis base (LB) is (o-C6H4Me)3P and the Lewis acid (LA) is B(p-C6F4H)3. BOMD simulations indicate that the path of H2 liberation from the ion-pair 1 goes via the short-lived transient species, LB⋯H2⋯LA, which are structurally reminiscent of the TS-structure in the minimum-energy-path describing the reversible reaction between H2 and (o-C6H4Me)3P/B(p-C6F4H)3 frustrated Lewis pair (FLP). With electronic structure calculations performed on graphics processing units, our BOMD data-set covers more than 1 ns of evolution of the ion-pair 1 at temperature T ≈ 400 K. BOMD simulations produced H2-recombination events with various durations of H2 remaining fully recombined as a molecule within a LB/LA attractive “pocket”—from very short vibrational-time scale to time scales in the range of a few hundred femtoseconds. With the help of perturbational approach to trajectory-propagation over a saddle-area, we directly examined dynamics of H2-liberation. Using EDA, we elucidated interactions between the cationic and anionic fragments in the ion-pair 1 and between the molecular fragments in the TS-structure. We have also considered a model that qualitatively takes into account the potential energy characteristics of H—H recombination and H2-release plus inertia of molecular motion of the (o-C6H4Me)3P/B(p-C6F4H)3 FLP.

1.
See https://sustainabledevelopment.un.org/?menu=1300 for 17th United Nations Sustainable Development Goals (SDGs).
2.
See http://www.sc.doe.gov/bes/hydrogen.pdf for “Basic Research Needs for the Hydrogen Economy”;
The Hydrogen Economy
(
United Nations Environment Programme (UNEP)
,
2006
), ISBN:92-807-2657-9.
3.
W.
Grochala
and
P. P.
Edwards
,
Chem. Rev.
104
,
1283
(
2004
).
4.
G. C.
Welch
,
R. R.
San Juan
,
J. D.
Masuda
, and
D. W.
Stephan
,
Science
314
,
1124
1126
(
2006
).
5.
M.
Ulrich
,
A. J.
Lough
, and
D. W.
Stephan
,
J. Am. Chem. Soc.
131
,
52
53
(
2009
).
6.
Frustrated Lewis Pairs
, Topics in Current Chemistry, edited by
D. W.
Stephan
and
G.
Erker
(
Springer
,
2013
), Vols. 332 and 334;
D. W.
Stephan
and
G.
Erker
,
Angew. Chem., Int. Ed.
49
,
46
76
(
2010
);
D. W.
Stephan
and
G.
Erker
,
Chem. Sci.
5
,
2625
2641
(
2014
);
D. W.
Stephan
,
J. Am. Chem. Soc.
137
,
10018
10032
(
2015
).
[PubMed]
7.
T. A.
Rokob
,
A.
Hamza
, and
I.
Papai
,
J. Am. Chem. Soc.
131
,
10701
10710
(
2009
).
8.
Electronic Structure Calculations on Graphics Processing Units. From Quantum Chemistry to Condensed Matter Physics
, edited by
R. C.
Walker
and
A. W.
Götz
(
John Wiley & Sons, Ltd.
,
2016
), ISBN: 9781118661789.
9.
I. S.
Ufimtsev
and
T. J.
Martinez
,
Comput. Sci. Eng.
10
,
26
34
(
2008
);
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
);
[PubMed]
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
5
,
1004
1015
(
2009
);
[PubMed]
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
4
,
222
231
(
2008
).
[PubMed]
10.
T. A.
Rokob
and
I.
Papai
,
Top. Curr. Chem.
332
,
157
(
2013
).
11.
M.
Pu
and
T.
Privalov
,
Isr. J. Chem.
55
,
179
(
2015
).
12.
T. A.
Rokob
,
A.
Hamza
,
A.
Stirling
,
T.
Soos
, and
I.
Papai
,
Angew. Chem., Int. Ed.
47
,
2435
2438
(
2008
).
13.
S.
Grimme
,
H.
Kruse
,
L.
Goerigk
, and
G.
Erker
,
Angew. Chem., Int. Ed.
49
,
1402
1405
(
2010
).
14.
M.
Pu
and
T.
Privalov
,
J. Chem. Phys.
138
,
154305
(
2013
).
15.
M.
Pu
and
T.
Privalov
,
Int. J. Quantum Chem.
114
,
289
(
2014
).
16.
M.
Pu
and
T.
Privalov
,
Inorg. Chem.
53
,
4598
(
2014
).
17.
M.
Pu
and
T.
Privalov
,
ChemPhysChem
15
,
2936
(
2014
).
18.
L.
Liu
,
B.
Lukose
, and
B.
Ensing
,
J. Phys. Chem. C
121
,
2046
2051
(
2017
).
19.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
2012
).
20.
U.
Lourderaj
,
K.
Park
, and
W. L.
Hase
,
Int. Rev. Phys. Chem.
27
,
361
(
2008
).
21.
L. Y. P.
Luk
,
J. J.
Ruiz-Pernía
,
W. M.
Dawson
,
M.
Roca
,
E. J.
Loveridge
,
D. R.
Glowacki
,
J. N.
Harvey
,
A. J.
Mulholland
,
I.
Tuñón
,
V.
Moliner
, and
R. K.
Allemann
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
16344
(
2013
), and references therein.
22.
M.
Karplus
and
J. A.
McCammon
,
Nat. Struct. Biol.
9
,
646
(
2002
);
[PubMed]
D. R.
Glowacki
and
J. N.
Harvey
,
Nat. Chem.
4
,
169
(
2012
);
[PubMed]
E. J.
Loveridge
,
E. M.
Behiry
,
J.
Guo
, and
R. K.
Allemann
,
Nat. Chem.
4
,
292
(
2012
);
[PubMed]
S.
Hay
and
N. S.
Scrutton
,
Nat. Chem.
4
,
161
(
2012
).
[PubMed]
23.
M. R.
Siebert
,
J.
Zhang
,
S. V.
Addepalli
,
D. J.
Tantillo
, and
W. L.
Hase
,
J. Am. Chem. Soc.
133
,
8335
(
2011
);
[PubMed]
M. R.
Siebert
,
P.
Manikandan
,
R.
Sun
,
D. J.
Tantillo
, and
W. L.
Hase
,
J. Chem. Theory Comput.
8
,
1212
(
2012
).
[PubMed]
24.
Y. J.
Hong
and
D. J.
Tantillo
,
Nat. Chem.
6
,
104
(
2014
).
25.
L.
Sun
,
K.
Song
, and
W. L.
Hase
,
Science
296
,
875
(
2002
).
26.
J.
Mikosch
,
S.
Trippel
,
C.
Eichhorn
,
R.
Otto
,
U.
Lourderaj
,
J. X.
Zhang
,
W. L.
Hase
,
M.
Weidemüller
, and
R.
Wester
,
Science
319
,
183
(
2008
).
27.
R. T.
Skodie
,
Annu. Rev. Phys. Chem.
44
,
145
172
(
1993
).
28.
D.
Townsend
,
S. A.
Lahankar
,
S. K.
Lee
,
S. D.
Chambreau
,
A. G.
Suits
,
X.
Zhang
,
J.
Rheinecker
,
L. B.
Harding
, and
J. M.
Bowman
,
Science
306
,
1158
(
2004
);
[PubMed]
M. J. T.
Jordan
and
S. H.
Kable
,
Science
335
,
1054
(
2012
);
[PubMed]
M. P.
Grubb
,
M. L.
Warter
,
H.
Xiao
,
S.
Maeda
,
K.
Morokuma
, and
S. W.
North
,
Science
335
,
1075
(
2012
).
[PubMed]
29.
J. M.
Bowman
and
B. C.
Shepler
,
Annu. Rev. Phys. Chem.
62
,
531
(
2011
).
30.
K.
Christoffel
and
J. M.
Bowman
,
J. Phys. Chem. A
113
,
4138
(
2009
);
[PubMed]
B. G.
McKown
,
M.
Ceriotti
,
C. C.
Womack
,
E.
Kamarchik
,
L. J.
Butler
, and
J. M.
Bowman
,
J. Phys. Chem. A
117
,
10951
(
2013
).
[PubMed]
31.
P.
Vidossich
,
A.
Lledos
, and
G.
Ujaque
,
Acc. Chem. Res.
49
,
1271
1278
(
2016
).
32.
G. D.
Leines
and
B.
Ensing
,
Phys. Rev. Lett.
109
,
020601
(
2012
), and references therein.
33.
L.-P.
Wang
,
A.
Titov
,
R.
McGibbon
,
F.
Liu
,
V. S.
Pande
, and
T. J.
Martinez
,
Nat. Chem.
6
,
1044
1048
(
2014
).
34.
T. J.
Martinez
,
Acc. Chem. Res.
50
,
652
656
(
2017
).
35.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
154119
(
2010
);
[PubMed]
S.
Grimme
,
J. Comput. Chem.
27
,
1787
1799
(
2006
).
[PubMed]
36.
See http://www.nvidia.com/object/what-is-gpu-computing.html for general information regarding scientific GPU-computing.
37.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
L. P.
Wolters
and
F. M.
Bickelhaupt
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
324
343
(
2015
).
[PubMed]
39.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T. J.
Ziegler
,
Comput. Chem.
22
,
931
967
(
2001
), and references cited therein;
F. M.
Bickelhaupt
and
E. J.
Baerends
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
Wiley-VCH
,
New York
,
2000
), Vol. 15, pp.
1
86
;
C.
Fonseca Guerra
,
J.-W.
Handgraaf
,
E. J.
Baerends
, and
F. M.
Bickelhaupt
,
J. Comput. Chem.
25
,
189
210
(
2004
);
[PubMed]
Computer Code ADF 2016.01, Scientific Computing and Modeling NV, Amsterdam, The Netherlands, http://www.scm.com.
40.
E.
van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
1156
(
2003
).
41.
A.
Kazaryan
and
E. J.
Baerends
,
J. Comput. Chem.
34
,
870
878
(
2013
).
42.
A.
Hamza
,
A.
Stirling
,
T. A.
Rokob
, and
I.
Papai
,
Int. J. Quantum Chem.
109
,
2416
2425
(
2009
).
43.
T. A.
Rokob
,
I.
Bako
,
A.
Stirling
,
A.
Hamza
, and
I. J.
Papai
,
Am. Chem. Soc.
135
,
4425
4437
(
2013
).

Supplementary Material

You do not currently have access to this content.