The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2F3I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

1.
A.
Nomerotski
,
M.
Brouard
,
E.
Campbell
,
A.
Clark
,
J.
Crooks
,
J.
Fopma
,
J. J.
John
,
A. J.
Johnsen
,
C.
Slater
,
R.
Turchetta
,
C.
Vallance
,
E.
Wilman
, and
W. H.
Yuen
,
J. Instrum.
5
,
C07007
(
2010
).
2.
A. T.
Clark
,
J. P.
Crooks
,
I.
Sedgwick
,
R.
Turchetta
,
J. W. L.
Lee
,
J. J.
John
,
E. S.
Wilman
,
L.
Hill
,
E.
Halford
,
C. S.
Slater
,
B.
Winter
,
W. H.
Yuen
,
S. H.
Gardiner
,
M. L.
Lipciuc
,
M.
Brouard
,
A.
Nomerotski
, and
C.
Vallance
,
J. Phys. Chem. A
116
,
10897
(
2012
).
3.
E. S.
Wilman
,
S. H.
Gardiner
,
A.
Nomerotski
,
R.
Turchetta
,
M.
Brouard
, and
C.
Vallance
,
Rev. Sci. Instrum.
83
,
013304
(
2012
).
4.
R.
Moshammer
,
M.
Unverzagt
,
W.
Schmitt
,
J.
Ullrich
, and
H.
Schmidt-Böcking
,
Nucl. Instrum. Methods Phys. Res., Sect. B
108
,
425
(
1996
).
5.
J.
Ullrich
,
R.
Moshammer
,
R.
Dörner
,
O.
Jagutzki
,
V.
Mergel
,
H.
Schmidt-Böcking
, and
L.
Spielberger
,
J. Phys. B
30
,
2917
2974
(
1997
).
6.
J. A.
Davies
,
J. E.
LeClaire
,
R. E.
Continetti
, and
C. C.
Hayden
,
J. Chem. Phys.
111
,
1
(
1999
).
7.
A.
Lafosse
,
M.
Lebech
,
J. C.
Brenot
,
P. M.
Guyon
,
O.
Jagutzki
,
L.
Spielberger
,
M.
Vervloet
,
J. C.
Houver
, and
D.
Dowek
,
Phys. Rev. Lett.
84
,
5987
(
2000
).
8.
C. R.
Gebhardt
,
T. P.
Rakitzis
,
P. C.
Samartzis
,
V.
Ladopoulos
, and
T. N.
Kitsopoulos
,
Rev. Sci. Instrum.
72
,
3848
(
2001
).
9.
D.
Strasser
,
X.
Urbain
,
H. B.
Pedersen
,
N.
Altstein
,
O.
Heber
,
R.
Wester
,
K. G.
Bhushan
, and
D.
Zajfman
,
Rev. Sci. Instrum.
71
,
3092
(
2000
).
10.
S. K.
Lee
,
F.
Cudry
,
Y. F.
Lin
,
S.
Lingenfelter
,
A. H.
Winney
,
L.
Fan
, and
W.
Li
,
Rev. Sci. Instrum.
85
,
123303
(
2014
).
11.
K.
Amini
,
S.
Blake
,
M.
Brouard
,
M. B.
Burt
,
E.
Halford
,
A.
Lauer
,
C. S.
Slater
,
J. W. L.
Lee
, and
C.
Vallance
,
Rev. Sci. Instrum.
86
,
103113
(
2015
).
12.
C. S.
Slater
,
S.
Blake
,
M.
Brouard
,
A.
Lauer
,
C.
Vallance
,
J. J.
John
,
R.
Turchetta
,
A.
Nomerotski
,
L.
Christensen
,
J. H.
Nielsen
,
M. P.
Johansson
, and
H.
Stapelfeldt
,
Phys. Rev. A
89
,
011401(R)
(
2014
).
13.
C. S.
Slater
,
S.
Blake
,
M.
Brouard
,
A.
Lauer
,
C.
Vallance
,
C. S.
Bohun
,
L.
Christensen
,
J. H.
Nielsen
,
M. P.
Johansson
, and
H.
Stapelfeldt
,
Phys. Rev. A
91
,
053424
(
2015
).
14.
D.
Rolles
, “
Personal communication and DAMOP talk
,” personal communication (
2016
).
15.
M.
Beutler
,
M.
Ghotbi
,
F.
Noack
, and
I. V.
Hertel
,
Opt. Lett.
35
,
1491
(
2010
).
16.
M.
Ghotbi
,
M.
Beutler
, and
F.
Noack
,
Opt. Lett.
35
,
3492
(
2010
).
17.
P.
Farmanara
,
O.
Steinkellner
,
M. T.
Wick
,
M.
Wittmann
,
G.
Korn
,
V.
Stert
, and
W.
Radloff
,
J. Chem. Phys.
111
,
6264
(
1999
).
18.
T.
Fuji
,
Y.-I.
Suzuki
,
T.
Horio
, and
T.
Suzuki
,
Chem.- Asian J.
6
,
3028
(
2011
).
19.
T.
Kobayashi
,
T.
Horio
, and
T.
Suzuki
,
J. Phys. Chem. A
119
,
9518
(
2015
).
20.
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
21.
D. H.
Parker
and
A. T. J. B.
Eppink
,
J. Chem. Phys.
107
,
2357
(
1997
).
22.
C.
Homann
,
N.
Krebs
, and
E.
Riedle
,
Appl. Phys. B
104
,
783
(
2011
).
23.
S.-Y.
Liu
,
K.
Alnama
,
J.
Matsumoto
,
K.
Nishizawa
,
H.
Kohguchi
,
Y.-P.
Lee
, and
T.
Suzuki
,
J. Phys. Chem. A
115
,
2953
(
2011
).
24.
25.
C.
Vallance
,
M.
Brouard
,
A.
Lauer
,
C. S.
Slater
,
E.
Halford
,
B.
Winter
,
S. J.
King
,
J. W. L.
Lee
,
D. E.
Pooley
,
I.
Sedgwick
,
R.
Turchetta
,
A.
Nomerotski
,
J. J.
John
, and
L.
Hill
,
Phys. Chem. Chem. Phys.
16
,
383
(
2014
).
26.
P.
Hockett
,
E.
Ripani
,
A.
Rytwinski
, and
A.
Stolow
,
J. Mod. Opt.
60
,
1409
(
2013
).
27.
J.
Schander
and
B.
Russell
,
J. Mol. Spectrosc.
65
,
379
(
1977
).
28.
The C2F3 C2F3 + I(2P3/2) dissociation limit was extracted from VMI data recorded in previous single photon dissociation, I(2P3/2) fragment-selective (2 + 1) resonantly enhanced multiphoton ionization VMI experiments at the NRC laboratory. By carefully calibrating the I(2P3/2) kinetic energy release using data recorded in similar experiments performed with a CH3I sample and the CH3I dissociation limit reported by
A.
van den Brom
[
Chem. Phys. Lett.
368
,
324
(
2003
)], a dissociation limit of 3.20 ± 0.05 eV was determined for C2F3I.
29.
E. U.
Franck
,
Ber. Bunsengesellschaft Phys. Chem.
94
,
93
(
1990
).
30.
N.
Caballero
,
E.
Castellano
,
C.
Cobos
,
A.
Croce
, and
G.
Pino
,
Chem. Phys.
246
,
157
(
1999
).
31.
G. B.
Bacskay
,
Mol. Phys.
113
,
1608
(
2015
).
32.
Y.
Geboes
,
F. D.
Proft
, and
W. A.
Herrebout
,
J. Phys. Chem. A
119
,
5597
(
2015
).
33.
B. E.
Wurfel
,
N.
Pugliano
,
S. E.
Bradforth
,
R. J.
Saykally
, and
G. C.
Pimentel
,
J. Phys. Chem. A
95
,
2932
(
1991
).
34.
D.
McNaughton
and
P.
Elmes
,
Spectrochim. Acta, Part A
48
,
605
(
1992
).
35.
K.
Sendt
and
G. B.
Bacskay
,
J. Chem. Phys.
112
,
2227
(
2000
).
36.
A.
Carrington
and
B.
Howard
,
Mol. Phys.
18
,
225
(
1970
).
37.
J. C.
McGurk
and
W. H.
Flygare
,
J. Chem. Phys.
59
,
5742
(
1973
).
38.
E.
Tiemann
,
J.
Hoeft
, and
T.
Törring
,
Z. Naturforsch., A
28
,
1405
(
1973
).
39.
S. G.
Lias
,
J. Phys. Chem. Ref. Data
17
(Suppl. 1),
861
(
1988
).
40.
See http://webbook.nist.gov/chemistry/ for the NIST Chemistry Webbook.
41.
G.
Bieri
,
A.
Schmelzer
,
L.
Åsbrink
, and
M.
Jonsson
,
Chem. Phys.
49
,
213
(
1980
).
42.
K.
Watanabe
,
T.
Nakayama
, and
J.
Mottl
,
J. Quant. Spectrosc. Radiat. Transfer
2
,
369
(
1962
).
43.
A.
Lago
,
B.
da Silva
, and
P.
Arakaki
,
J. Electron Spectrosc. Relat. Phenom.
189
,
61
(
2013
).
44.
H.
Tao
,
T. K.
Allison
,
T. W.
Wright
,
A. M.
Stooke
,
C.
Khurmi
,
J.
van Tilborg
,
Y.
Liu
,
R. W.
Falcone
,
A.
Belkacem
, and
T. J.
Martinez
,
J. Chem. Phys.
134
,
244306
(
2011
).
45.
T. K.
Allison
,
H.
Tao
,
W. J.
Glover
,
T. W.
Wright
,
A. M.
Stooke
,
C.
Khurmi
,
J.
van Tilborg
,
Y.
Liu
,
R. W.
Falcone
,
T. J.
Martińez
, and
A.
Belkacem
,
J. Chem. Phys.
136
,
124317
(
2012
).
46.
B. G.
Levine
and
T. J.
Martińez
,
J. Phys. Chem. A
113
,
12815
(
2009
).
47.
J. J.
Lin
,
S. M.
Wu
,
D. W.
Hwang
,
Y. T.
Lee
, and
X.
Yang
,
J. Chem. Phys.
109
,
10838
(
1998
).
48.
M.
Wollenhaupt
,
M.
Krug
,
J.
Köhler
,
T.
Bayer
,
C.
Sarpe-Tudoran
, and
T.
Baumert
,
Appl. Phys. B
95
,
647
(
2009
).
49.
C.
Smeenk
,
L.
Arissian
,
A.
Staudte
,
D. M.
Villeneuve
, and
P. B.
Corkum
,
J. Phys. B
42
,
185402
(
2009
).
50.
P.
Hockett
,
M.
Staniforth
, and
K. L.
Reid
,
Mol. Phys.
108
,
1045
(
2010
).
51.
A. I.
Chichinin
,
K.-H.
Gericke
,
S.
Kauczok
, and
C.
Maul
,
Int. Rev. Phys. Chem.
28
,
607
(
2009
).
52.
D.
Rolles
,
Z.
Pešić
,
M.
Perri
,
R.
Bilodeau
,
G.
Ackerman
,
B.
Rude
,
A.
Kilcoyne
,
J.
Bozek
, and
N.
Berrah
,
Nucl. Instrum. Methods Phys. Res., Sect. B
261
,
170
(
2007
).
53.
S. K.
Lee
,
Y. F.
Lin
,
S.
Lingenfelter
,
L.
Fan
,
A. H.
Winney
, and
W.
Li
,
J. Chem. Phys.
141
,
221101
(
2014
).
54.
Y. F.
Lin
,
S. K.
Lee
,
P.
Adhikari
,
T.
Herath
,
S.
Lingenfelter
,
A. H.
Winney
, and
W.
Li
,
Rev. Sci. Instrum.
86
,
096110
(
2015
).
55.
A. H.
Winney
,
Y. F.
Lin
,
S. K.
Lee
,
P.
Adhikari
, and
W.
Li
,
Phys. Rev. A
93
,
031402(R)
(
2016
).
56.
B. G.
Levine
,
J. D.
Coe
,
A. M.
Virshup
, and
T. J.
Martińez
,
Chem. Phys.
347
,
3
(
2008
).
57.
H.
Tao
,
B. G.
Levine
, and
T. J.
Martińez
,
J. Phys. Chem. A
113
,
13656
(
2009
).
58.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martińez
,
J. Phys. Chem. A
116
,
2808
(
2012
).
59.
O.
Gessner
,
A. M. D.
Lee
,
J. P.
Shaffer
,
H.
Reisler
,
S. V.
Levchenko
,
A. I.
Krylov
,
J. G.
Underwood
,
H.
Shi
,
A. L. L.
East
,
D. M.
Wardlaw
,
E. t. H.
Chrysostom
,
C. C.
Hayden
, and
A.
Stolow
,
Science
311
,
219
(
2006
).
60.
C. S.
Lehmann
,
N. B.
Ram
, and
M. H. M.
Janssen
,
Rev. Sci. Instrum.
83
,
093103
(
2012
).
61.
Raw data and processing routines are available via an online OSF repository ().
You do not currently have access to this content.