The particle number, energy, and volume probability distributions in the canonical, isothermal-isobaric, grand canonical, and isobaric-isenthalpic ensembles are investigated. In particular, we consider Gaussian and non-Gaussian behavior and formulate the results in terms of a single expression valid for all the ensembles employing common, experimentally accessible, thermodynamic derivatives. This is achieved using Fluctuation Solution Theory to help manipulate derivatives of the entropy. The properties of the distributions are then investigated using available equations of state for fluid water and argon. Purely Gaussian behavior is not observed for any of the state points considered here. A set of simple measures, involving thermodynamic derivatives, indicating non-Gaussian behavior is proposed. A general expression, valid in the high temperature limit, for small energy fluctuations in the canonical ensemble is provided.

1.
T. L.
Hill
,
Statistical Mechanics
(
McGraw-Hill
,
New York
,
1956
).
2.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
3.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
USA
,
1987
).
4.
G.
Ruppeiner
,
Rev. Mod. Phys.
67
,
605
(
1995
).
5.
H. B.
Callen
and
T. A.
Welton
,
Phys. Rev.
83
,
34
(
1951
).
6.
G.
Nicolis
and
I.
Prigogine
,
Proc. Natl. Acad. Sci. U. S. A.
68
,
2102
(
1971
).
7.
P.
Colonna
,
N. R.
Nannan
,
A.
Guardone
, and
T. P.
van der Stelt
,
Fluid Phase Equilib.
286
,
43
(
2009
).
8.
M.
Castier
and
V. F.
Cabral
,
Fluid Phase Equilib.
334
,
128
(
2012
).
9.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics, Part I
, 3rd ed., translated from the Russian by
J. B.
Sykes
and
M. J.
Kearsley
(
Pergamon Press
,
Oxford
,
1980
).
11.
G.
Ruppeiner
,
Am. J. Phys.
78
,
1170
(
2010
).
12.
L.
Diosi
and
B.
Lukacs
,
Phys. Rev. A
31
,
3415
(
1985
).
13.
J. A.
Tuszynski
,
M. J.
Clouter
, and
H.
Kiefte
,
Phys. Rev. B
33
,
3423
(
1986
).
14.
E. A.
Ploetz
,
S.
Karunaweera
, and
P. E.
Smith
,
J. Chem. Phys.
142
,
044502
(
2015
).
15.
R. F.
Greene
and
H. B.
Callen
,
Phys. Rev.
83
,
1231
(
1951
).
16.
N.
Davidson
,
Statistical Mechanics
(
McGraw-Hill
,
New York
,
1962
).
17.
J. G.
Kirkwood
and
R. J.
Goldberg
,
J. Chem. Phys.
18
,
54
(
1950
).
18.
E. A.
Ploetz
and
P. E.
Smith
,
J. Chem. Phys.
135
,
044506
(
2011
).
19.
E. A.
Ploetz
and
P. E.
Smith
,
Adv. Chem. Phys.
153
,
311
(
2013
).
20.
E. A.
Ploetz
and
P. E.
Smith
,
J. Phys. Chem. B
119
,
7761
(
2015
).
21.
J. G.
Kirkwood
and
F. P.
Buff
,
J. Chem. Phys.
19
,
774
(
1951
).
22.
A.
Ben-Naim
,
Molecular Theory of Solutions
(
Oxford University Press
,
New York
,
2006
).
23.
P. E.
Smith
,
E.
Matteoli
, and
J. P.
O’Connell
,
Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering and Biophysics
(
CRC Press
,
Boca Raton
,
2013
).
24.
E. A.
Ploetz
,
G. N.
Pallewela
, and
P. E.
Smith
, “
Fluctuation Solution Theory of Pure Fluids
,“
J. Chem. Phys.
(to be published).
25.
A.
Munster
,
Classical Thermodynamics
(
Wiley-Interscience
,
London
,
1970
).
26.
P.
Schofield
,
Proc. Phys. Soc.
88
,
149
(
1966
).
27.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids: Fundamentals
(
Oxford University Press
,
New York
,
1984
), Vol. 1
28.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
29.
W.
Wagner
and
A.
Pruss
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
30.
C.
Tegeler
,
R.
Span
, and
W.
Wagner
,
J. Phys. Chem. Ref. Data
28
,
779
(
1999
).
31.
A. H.
Harvey
,
A. P.
Peskin
, and
S. A.
Klein
, NIST Standard Reference Database 10: NIST/ASME Steam Properties, Version 2.22 (
U.S. Department of Commerce
,
Gaithersburg
,
2008
).
32.
E. W.
Lemmon
,
M. L.
Huber
, and
M. O.
McLinden
, REFPROP: Reference Fluid Thermodynamic and Transport Properties, Version 9.1, DLL version number 9.1, U.S. Secretary of Commerce on behalf of the United States of America: Applied Chemicals and Materials Division,
2013
.
33.
G.
Ruppeiner
,
Phys. Rev. A
27
,
1116
(
1983
).
You do not currently have access to this content.