The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green’s function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1999
).
2.
R. R.
Ernst
,
G.
Bodenhausen
,
A.
Wokaun
 et al,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Clarendon Press
,
Oxford
,
1987
), Vol. 14.
3.
W. E.
Moerner
,
Rev. Mod. Phys.
87
,
1183
(
2015
).
4.
K. C.
Neuman
and
A.
Nagy
,
Nat. Methods
5
,
491
(
2008
).
5.
M.
Rief
,
M.
Gautel
,
F.
Oesterhelt
,
J. M.
Fernandez
, and
H. E.
Gaub
,
Science
276
,
1109
(
1997
).
6.
I.
Franco
,
M. A.
Ratner
, and
G. C.
Schatz
, “
Single-molecule pulling: Phenomenology and interpretation
,” in
Nano and Cell Mechanics
, edited by
H.
Espinosa
and
G.
Bao
(
Wiley
,
2014
), Chap. 14, pp.
359
388
.
7.
S.
Block
,
A.
Greinacher
,
C. A.
Helm
, and
M.
Delcea
,
Soft Matter
10
,
2775
(
2014
).
9.
J. P.
Bergfield
and
M. A.
Ratner
,
Phys. Status Solidi
250
,
2249
(
2013
).
10.
A. C.
Aragonès
,
N. L.
Haworth
,
N.
Darwish
,
S.
Ciampi
,
N. J.
Bloomfield
,
G. G.
Wallace
,
I.
Diez-Perez
, and
M. L.
Coote
,
Nature
531
,
88
(
2016
).
11.
B.
Schuler
,
S.
Fatayer
,
F.
Mohn
,
N.
Moll
,
N.
Pavliček
,
G.
Meyer
,
D.
Peña
, and
L.
Gross
,
Nat. Chem.
8
,
220
(
2016
).
12.
E. C.
Le Ru
and
P. G.
Etchegoin
,
Annu. Rev. Phys. Chem.
63
,
65
(
2012
).
13.
E.
Scheer
,
Molecular Electronics: An Introduction to Theory and Experiment
(
World Scientific
,
2010
), Vol. 1.
14.
F.
Chen
and
N. J.
Tao
,
Acc. Chem. Res.
42
,
573
(
2009
).
15.
M. S.
Hybertsen
and
L.
Venkataraman
,
Acc. Chem. Res.
49
,
452
(
2016
).
16.
T. A.
Su
,
H.
Li
,
M. L.
Steigerwald
,
L.
Venkataraman
, and
C.
Nuckolls
,
Nat. Chem.
7
,
215
(
2015
).
17.
J. J.
Parks
,
A. R.
Champagne
,
T. A.
Costi
,
W. W.
Shum
,
A. N.
Pasupathy
,
E.
Neuscamman
,
S.
Flores-Torres
,
P. S.
Cornaglia
,
A. A.
Aligia
,
C. A.
Balseiro
,
G. K.-L.
Chan
,
H. D.
Abruna
, and
D. C.
Ralph
,
Science
328
,
1370
(
2010
).
18.
L.
Venkataraman
,
J. E.
Klare
,
I. W.
Tam
,
C.
Nuckolls
,
M. S.
Hybertsen
, and
M. L.
Steigerwald
,
Nano Lett.
6
,
458
(
2006
).
19.
C.
Li
,
I.
Pobelov
,
T.
Wandlowski
,
A.
Bagrets
,
A.
Arnold
, and
F.
Evers
,
J. Am. Chem. Soc.
130
,
318
(
2008
).
20.
S.
Chang
,
J.
He
,
A.
Kibel
,
M.
Lee
,
O.
Sankey
,
P.
Zhang
, and
S.
Lindsay
,
Nat. Nanotechnol.
4
,
297
(
2009
).
21.
W.
Hong
,
H.
Valkenier
,
G.
Mészáros
,
D. Z.
Manrique
,
A.
Mishchenko
,
A.
Putz
,
P. M.
García
,
C. J.
Lambert
,
J. C.
Hummelen
, and
T.
Wandlowski
,
Beilstein J. Nanotechnol.
2
,
699
(
2011
).
22.
I.
Franco
,
G. C.
Solomon
,
G. C.
Schatz
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
133
,
15714
(
2011
).
23.
I.
Franco
,
C. B.
George
,
G. C.
Solomon
,
G. C.
Schatz
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
133
,
2242
(
2011
).
24.
S. M.
Parker
,
M.
Smeu
,
I.
Franco
,
M. A.
Ratner
, and
T.
Seideman
,
Nano Lett.
14
,
4587
(
2014
).
25.
W.
Hong
,
D. Z.
Manrique
,
P.
Moreno-García
,
M.
Gulcur
,
A.
Mishchenko
,
C. J.
Lambert
,
M. R.
Bryce
, and
T.
Wandlowski
,
J. Am. Chem. Soc.
134
,
2292
(
2012
).
26.
X.
Li
,
J.
He
,
J.
Hihath
,
B.
Xu
,
S. M.
Lindsay
, and
N.
Tao
,
J. Am. Chem. Soc.
128
,
2135
(
2006
).
27.
A.
Mishchenko
,
L. A.
Zotti
,
D.
Vonlanthen
,
M.
Bürkle
,
F.
Pauly
,
J. C.
Cuevas
,
M.
Mayor
, and
T.
Wandlowski
,
J. Am. Chem. Soc.
133
,
184
(
2011
).
28.
B. Q.
Xu
,
X. L.
Li
,
X. Y.
Xiao
,
H.
Sakaguchi
, and
N. J.
Tao
,
Nano Lett.
5
,
1491
(
2005
).
29.
X.
Zhao
,
C.
Huang
,
M.
Gulcur
,
A. S.
Batsanov
,
M.
Baghernejad
,
W.
Hong
,
M. R.
Bryce
, and
T.
Wandlowski
,
Chem. Mater.
25
,
4340
(
2013
).
30.
C.
Nacci
,
F.
Ample
,
D.
Bleger
,
S.
Hecht
,
C.
Joachim
, and
L.
Grill
,
Nat. Commun.
6
,
7397
(
2015
).
31.
M.
Koch
,
F.
Ample
,
C.
Joachim
, and
L.
Grill
,
Nat. Nanotechnol.
7
,
713
(
2012
).
32.
L.
Lafferentz
,
F.
Ample
,
H.
Yu
,
S.
Hecht
,
C.
Joachim
, and
L.
Grill
,
Science
323
,
1193
(
2009
).
33.
N.
Fournier
,
C.
Wagner
,
C.
Weiss
,
R.
Temirov
, and
F. S.
Tautz
,
Phys. Rev. B
84
,
035435
(
2011
).
35.
S. Y.
Quek
,
M.
Kamenetska
,
M. L.
Steigerwald
,
H. J.
Choi
,
S. G.
Louie
,
M. S.
Hybertsen
,
J. B.
Neaton
, and
L.
Venkataraman
,
Nat. Nanotechnol.
4
,
230
(
2009
).
36.
H.
Rascón-Ramos
,
J. M.
Artés
,
Y.
Li
, and
J.
Hihath
,
Nat. Mater.
14
,
517
(
2015
).
37.
M.
Frei
,
S. V.
Aradhya
,
M.
Koentopp
,
M. S.
Hybertsen
, and
L.
Venkataraman
,
Nano Lett.
11
,
1518
(
2011
).
38.
D. J.
Wold
and
C. D.
Frisbie
,
J. Am. Chem. Soc.
123
,
5549
(
2001
).
39.
S. K.
Chang
and
A. D.
Hamilton
,
J. Am. Chem. Soc.
110
,
1318
(
1988
).
40.
S. K.
Chang
,
D.
Van Engen
,
E.
Fan
, and
A. D.
Hamilton
,
J. Am. Chem. Soc.
113
,
7640
(
1991
).
41.
S. K.
Yang
and
S. C.
Zimmerman
,
Isr. J. Chem.
53
,
511
(
2013
).
42.
A.
Dirksen
,
U.
Hahn
,
F.
Schwanke
,
M.
Nieger
,
J. N. H.
Reek
,
F.
Vögtle
, and
L.
De Cola
,
Chem. - Eur. J.
10
,
2036
(
2004
).
43.
F.
Wessendorf
,
J.-F.
Gnichwitz
,
G. H.
Sarova
,
K.
Hager
,
U.
Hartnagel
,
D. M.
Guldi
, and
A.
Hirsch
,
J. Am. Chem. Soc.
129
,
16057
(
2007
).
44.
C.
Glockner
and
U.
Lüning
,
J. Inclusion Phenom. Macrocyclic Chem.
71
,
239
(
2011
).
45.
A.
Pirrotta
,
G. C.
Solomon
, and
I.
Franco
,
J. Phys. Chem. C
120
,
19470
(
2016
).
46.
S.
Huang
,
S.
Chang
,
J.
He
,
P.
Zhang
,
F.
Liang
,
M.
Tuchband
,
S.
Li
, and
S.
Lindsay
,
J. Phys. Chem. C
114
,
20443
(
2010
).
47.
S.
Lindsay
,
J.
He
,
O.
Sankey
,
P.
Hapala
,
P.
Jelinek
,
P.
Zhang
,
S.
Chang
, and
S.
Huang
,
Nanotechnology
21
,
262001
(
2010
).
48.
S.
Chang
,
J.
He
,
P.
Zhang
,
B.
Gyarfas
, and
S.
Lindsay
,
J. Am. Chem. Soc.
133
,
14267
(
2011
).
49.
T.
Nishino
,
N.
Hayashi
, and
P. T.
Bui
,
J. Am. Chem. Soc.
135
,
4592
(
2013
).
50.
Y.
Zhao
,
B.
Ashcroft
,
P.
Zhang
,
H.
Liu
,
S.
Sen
,
W.
Song
,
J.
Im
,
B.
Gyarfas
,
S.
Manna
,
S.
Biswas
,
C.
Borges
, and
S.
Lindsay
,
Nat. Nanotechnol.
9
,
466
(
2014
).
51.
S.
Chang
,
S.
Huang
,
H.
Liu
,
P.
Zhang
,
F.
Liang
,
R.
Akahori
,
S.
Li
,
B.
Gyarfas
,
J.
Shumway
,
B.
Ashcroft
,
J.
He
, and
S.
Lindsay
,
Nanotechnology
23
,
235101
(
2012
).
52.
M.
Wimmer
,
J. L.
Palma
,
P.
Tarakeshwar
, and
V.
Mujica
,
J. Phys. Chem. Lett.
7
,
2977
(
2016
).
53.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
54.
P.
Schofield
,
Comput. Phys. Commun.
5
,
17
(
1973
).
55.
56.
M.
Levitt
,
H.
Meirovitch
, and
R.
Huber
,
J. Mol. Biol.
168
,
617
(
1983
).
57.
N. L.
Allinger
,
Y. H.
Yuh
, and
J. H.
Lii
,
J. Am. Chem. Soc.
111
,
8551
(
1989
).
58.
J. H.
Lii
and
N. L.
Allinger
,
J. Comput. Chem.
12
,
186
(
1991
).
59.
I.
Franco
,
M. A.
Ratner
, and
G. C.
Schatz
,
J. Phys. Chem. B
115
,
2477
(
2011
).
60.
J. W.
Ponder
and
F. M.
Richards
,
J. Comput. Chem.
8
,
1016
1024
(
1987
).
61.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
62.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
,
J. Phys. Chem. A
111
,
5678
(
2007
).
63.
A.
Pecchia
,
G.
Penazzi
,
L.
Salvucci
, and
A.
Di Carlo
,
New J. Phys.
10
,
65022
(
2008
).
64.
A.
Fihey
,
C.
Hettich
,
J.
Touzeau
,
F.
Maurel
,
A.
Perrier
,
C.
Köhler
,
B.
Aradi
, and
T.
Frauenheim
,
J. Comput. Chem.
36
,
2075
(
2015
).
65.
A.
Bilić
,
J. R.
Reimers
,
N. S.
Hush
,
A.
Bilic
,
J. R.
Reimers
, and
N. S.
Hush
,
J. Chem. Phys.
122
,
094708
(
2005
).
66.
G. C.
Solomon
,
C.
Herrmann
,
T.
Hansen
,
V.
Mujica
, and
M. A.
Ratner
,
Nat. Chem.
2
,
223
(
2010
).
67.
C.
Bustamante
,
J.
Liphardt
, and
F.
Ritort
,
Phys. Today
58
(
7
),
43
(
2005
).
68.
T. L.
Hill
,
Thermodynamics of Small Systems
(
Courier Corporation
,
1963
).
69.
S. V.
Aradhya
and
L.
Venkataraman
,
Nat. Nanotechnol.
8
,
399
(
2013
).
70.
P.
Sautet
and
C.
Joachim
,
Chem. Phys. Lett.
153
,
511
(
1988
).
71.
Y.
Li
,
X.
Tu
,
M.
Wang
,
H.
Wang
,
S.
Sanvito
, and
S.
Hou
,
J. Chem. Phys.
141
,
174702
(
2014
).

Supplementary Material

You do not currently have access to this content.