The coupling of the charge carriers passing through a molecule bridging two bulky conductors with local vibrational modes of the molecule gives rise to distinct features in the electronic transport properties on one hand and to nonequilibrium features in the vibrations’ properties, e.g., their population, on the other. Here we explore theoretically a generic model for a molecular junction biased by an arbitrary dc voltage in the weak-coupling regime. We succinctly summarize parts of our past work related to the signature of the electron-vibration interaction on the full-counting statistics of the current fluctuations (i.e., the cumulant generating-function of the current correlations). In addition, we provide a novel account of the response to an ac field exerted on the junction (on top of the dc bias voltage); in particular, we study the nonequilibrium distribution and the displacement fluctuations of the vibrational modes. Remarkably, we find a behavior pattern that cannot be accounted for by classical forced oscillations. The calculations use the technique of nonequilibrium Green’s functions and treat the electron-vibration coupling in perturbation theory, within the random-phase approximation when required.

1.
C.
Joachim
,
J. K.
Gimzewski
, and
A.
Aviram
, “
Electronics using hybrid-molecular and mono-molecular devices
,”
Nature
408
,
541
(
2000
);
[PubMed]
J. C.
Cuevas
and
E.
Scheer
,
Molecular Electronics
(
World Scientific
,
Singapore
,
2010
).
2.
H.
Park
,
J.
Park
,
A. K. L.
Lim
,
E. H.
Anderson
,
A. P.
Alivisatos
, and
P. L.
McEuen
, “
Nanomechanical oscillations in a single-C60 transistor
,”
Nature
407
,
57
(
2000
);
[PubMed]
V.
Sazonova
,
Y.
Yaish
,
H.
Üstünel
,
D.
Roundy
,
T. A.
Arias
, and
P. L.
McEuen
, “
A tunable carbon nanotube electromechanical oscillator
,”
Nature
431
,
284
(
2004
).
[PubMed]
3.
R. H. M.
Smit
,
Y.
Noat
,
C.
Untiedt
,
N. D.
Lang
,
M. C.
van Hemert
, and
J. M.
van Ruitenbeek
, “
Measurement of the conductance of a hydrogen molecule
,”
Nature
419
,
906
(
2002
).
4.
M.
Kiguchi
,
O.
Tal
,
S.
Wohlthat
,
F.
Pauly
,
M.
Krieger
,
D.
Djukic
,
J. C.
Cuevas
, and
J. M.
van Ruitenbeek
, “
Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes
,”
Phys. Rev. Lett.
101
,
046801
(
2008
).
5.
S.
Sapmaz
,
P.
Jarillo-Herrero
,
Ya. M.
Blanter
,
C.
Dekker
, and
H. S. J. 
van der Zant
, “
Tunneling in suspended carbon nanotubes assisted by longitudinal phonons
,”
Phys. Rev. Lett.
96
,
026801
(
2006
);
[PubMed]
R.
Leturcq
,
C.
Stampfer
,
K.
Inderbitzin
,
L.
Durrer
,
C.
Hierold
,
E.
Mariani
,
M. G.
Schultz
,
F.
von Oppen
, and
K.
Ensslin
, “
Franck-Condon blockade in suspended carbon nanotube quantum dots
,”
Nat. Phys.
5
,
327
(
2009
).
6.
O.
Tal
,
M.
Krieger
,
B.
Leerink
, and
J. M.
van Ruitenbeek
, “
Electron-vibration interaction in single-molecule junctions: From contact to tunneling regimes
,”
Phys. Rev. Lett.
100
,
196804
(
2008
).
7.
N.
Agraït
,
C.
Untiedt
,
G.
Rubio-Bollinger
, and
S.
Vieira
, “
Onset of energy dissipation in ballistic atomic wires
,”
Phys. Rev. Lett.
88
,
216803
(
2002
);
[PubMed]
M.
Kumar
,
R.
Avriller
,
A.
Levy Yeyati
, and
J. M.
van Ruitenbeek
, “
Detection of vibration-mode scattering in electronic shot noise
,”
Phys. Rev. Lett.
108
,
146602
(
2012
).
[PubMed]
8.
S.
Ballmann
,
R.
Härtle
,
P. B.
Coto
,
M.
Elbing
,
M.
Mayor
,
M. R.
Bryce
,
M.
Thoss
, and
H. B.
Weber
, “
Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions
,”
Phys. Rev. Lett.
109
,
056801
(
2012
).
9.
S. V.
Aradhya
and
L.
Venkataraman
, “
Single-molecule junctions beyond electronic transport
,”
Nat. Nano.
8
,
399
(
2013
).
10.
Y.
Kim
,
H.
Song
,
F.
Strigl
,
H.
Pernau
,
T.
Lee
, and
E.
Scheer
, “
Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation
,”
Phys. Rev. Lett.
106
,
196804
(
2011
).
11.
D. R.
Ward
,
N. J.
Halas
,
J. W.
Ciszek
,
J. M.
Tour
,
Y.
Wu
,
P.
Nordlander
, and
D.
Natelson
, “
Simultaneous measurements of electronic conduction and Raman response in molecular junctions
,”
Nano Lett.
8
,
919
(
2008
).
12.
J.
Koch
,
M.
Semmelhack
,
F.
von Oppen
, and
A.
Nitzan
, “
Current-induced nonequilibrium vibrations in single-molecule devices
,”
Phys. Rev. B
73
,
155306
(
2006
).
13.
K.
Kaasbjerg
,
T.
Novotný
, and
A.
Nitzan
, “
Charge-carrier-induced frequency renormalization, damping, and heating of vibrational modes in nanoscale junctions
,”
Phys. Rev. B
88
,
201405(R)
(
2013
).
14.
D. R.
Ward
,
D. A.
Corley
,
J. M.
Tour
, and
D.
Natelson
, “
Vibrational and electronic heating in nanoscale junctions
,”
Nat. Nano.
6
,
33
(
2011
).
15.
L.
Rincón-Garca
,
C.
Evangeli
,
G.
Rubio-Bollinger
, and
N.
Agraït
, “
Thermopower measurements in molecular junctions
,”
Chem. Soc. Rev.
45
,
4285
(
2016
).
16.
Y.
Li
,
P.
Zolotavin
,
P.
Doak
,
L.
Kronik
,
J. B.
Neaton
, and
D.
Natelson
, “
Interplay of bias-driven charging and the vibrational Stark effect in molecular junctions
,”
Nano Lett.
16
,
1104
(
2016
).
17.
D.
Rakhmilevitch
,
R.
Korytár
,
A.
Bagrets
,
F.
Evers
, and
O.
Tal
, “
Electron-vibration interaction in the presence of a switchable Kondo resonance realized in a molecular junction
,”
Phys. Rev. Lett.
113
,
236603
(
2014
).
18.
A.
Mugarza
,
C.
Krull
,
R.
Robles
,
S.
Stepanow
,
G.
Ceballos
, and
P.
Gambardella
, “
Spin coupling and relaxation inside molecule-metal contacts
,”
Nat. Commun.
2
,
490
(
2011
).
19.
M.
Paulsson
,
T.
Frederiksen
, and
M.
Brandbyge
, “
Inelastic transport through molecules: Comparing first-principles calculations to experiments
,”
Nano Lett.
6
,
258
(
2006
).
20.
W. R.
French
,
C. R.
Iacovella
,
I.
Rungger
,
A. M.
Souza
,
S.
Sanvito
, and
P. T.
Cummings
, “
Atomistic simulations of highly conductive molecular transport junctions under realistic conditions
,”
Nanoscale
5
,
3654
(
2013
).
21.
Z.-F.
Liu
and
J. B.
Beaton
, “
Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green’s function approach
,”
J. Chem. Phys.
141
,
131104
(
2014
).
22.
M.
Bai
,
C. S.
Cucinotta
,
Z.
Jiang
,
H.
Wang
,
Y.
Wang
,
I.
Rungger
,
S.
Sanvito
, and
S.
Hou
, “
Current-induced phonon renormalization in molecular junctions
,”
Phys. Rev. B
94
,
035411
(
2016
).
23.
J.-T.
,
M.
Brandbyge
,
P.
Hedegard
,
T. N.
Todorov
, and
D.
Dundas
, “
Current-induced atomic dynamics, instabilities, and Raman signals: Quasi-classical Langevin equation approach
,
Phys. Rev. B
85
,
245444
(
2012
).
24.
B.
Li
,
E. Y.
Wilner
,
M.
Thoss
,
E.
Rabani
, and
W. H.
Miller
, “
A quasi-classical mapping approach to vibrationally coupled electron transport in molecular junctions
,”
J. Chem. Phys.
140
,
104110
(
2014
);
[PubMed]
E. Y.
Wilner
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
, “
Sub-Ohmic to super-Ohmic crossover behavior in molecular tunneling junctions with electron-phonon interactions
,”
Phys. Rev. B
92
,
195143
(
2015
).
25.
T. M.
Caspary
and
U.
Peskin
, “
Electronic transport through molecular junctions with nonrigid molecule-leads coupling
,”
J. Chem. Phys.
127
,
154706
(
2007
).
26.
R.
Jom
and
T.
Seidman
, “
Competition between current-induced excitation and bath-induced decoherence in molecular junctions
,”
J. Chem. Phys.
131
,
244114
(
2009
).
27.
N. A.
Zimbovskaya
and
M. M.
Kuklja
, “
Vibration-induced inelastic effects in the electron transport through multisite molecular bridges
,”
J. Chem. Phys.
131
,
114703
(
2009
).
28.
U.
Harbola
,
M.
Esposito
, and
S.
Mukamel
, “
Quantum master equation for electron transport through quantum dots and single molecules
,”
Phys. Rev. B
74
,
235309
(
2006
);
R.
Härtle
and
M.
Thoss
, “
Resonant electron transport in single-molecule junctions: Vibrational excitation, rectification, negative differential resistance, and local cooling
,”
Phys. Rev. B
83
,
115414
(
2011
);
R.
Härtle
and
M.
Kulkarni
, “
Effect of broadening in the weak-coupling limit of vibrationally coupled electron transport through molecular junctions and the analogy to quantum dot circuit QED systems
,”
Phys. Rev. B
91
,
245429
(
2015
).
29.
L.
Mühlbacher
and
E.
Rabani
, “
Real-time path integral approach to nonequilibrium many-body quantum systems
,”
Phys. Rev. Lett.
100
,
176403
(
2008
).
30.
L. V.
Keldysh
, “
Diagram technique for nonequilibrium processes
,”
Sov. Phys. JETP
20
,
1018
(
1965
).
31.
A.
Mitra
,
I.
Aleiner
, and
A. J.
Millis
, “
Phonon effects in molecular transistors: Quantal and classical treatment
,”
Phys. Rev. B
69
,
245302
(
2004
).
32.
R.
Egger
and
A. O.
Gogolin
, “
Vibration-induced correction to the current through a single molecule
,”
Phys. Rev. B
77
,
113405
(
2008
).
33.
O.
Entin-Wohlman
,
Y.
Imry
, and
A.
Aharony
, “
Voltage-induced singularities in transport through molecular junctions
,”
Phys. Rev. B
80
,
035417
(
2009
).
34.
O.
Entin-Wohlman
,
Y.
Imry
, and
A.
Aharony
, “
Three-terminal thermoelectric transport through a molecular junction
,”
Phys. Rev. B
82
,
115314
(
2010
).
35.
A.
Ueda
,
O.
Entin-Wohlman
, and
A.
Aharony
, “
Effects of coupling to vibrational modes on the ac conductance of molecular junctions
,”
Phys. Rev. B
83
,
155438
(
2011
).
36.
O.
Entin-Wohlman
and
A.
Aharony
, “
Three-terminal thermoelectric transport through a molecule placed on an Aharonov-Bohm ring
,”
Phys. Rev. B
85
,
085401
(
2012
).
37.
Y.
Utsumi
,
O.
Entin-Wohlman
,
A.
Ueda
, and
A.
Aharony
, “
Full-counting statistics for molecular junctions: Fluctuation theorem and singularities
,”
Phys. Rev. B
87
,
115407
(
2013
).
38.
A.
Ueda
,
Y.
Utsumi
,
H.
Imamura
, and
Y.
Tokura
, “
Phonon-induced electron-hole excitation and ac conductance in molecular junction
,”
J. Phys. Soc. Jpn.
85
,
043703
(
2016
).
39.
F.
Haupt
,
T.
Novotný
, and
W.
Belzig
, “
Phonon-assisted current noise in molecular junctions
,”
Phys. Rev. Lett.
103
,
136601
(
2009
);
[PubMed]
F.
Haupt
,
T.
Novotný
, and
W.
Belzig
, “
Current noise in molecular junctions: Effects of the electron-phonon interaction
,”
Phys. Rev. B
82
,
165441
(
2010
);
T.
Novotný
,
F.
Haupt
, and
W.
Belzig
, “
Nonequilibrium phonon backaction on the current noise in atomic-sized junctions
,”
Phys. Rev. B
84
,
113107
(
2011
).
40.
R.
Avriller
and
A.
Levy Yeyati
, “
Electron-phonon interaction and full counting statistics in molecular junctions
,”
Phys. Rev. B
80
,
041309(R)
(
2009
).
41.
T. L.
Schmidt
and
A.
Komnik
, “
Charge transfer statistics of a molecular quantum dot with a vibrational degree of freedom
,”
Phys. Rev. B
80
,
041307(R)
(
2009
).
42.
D. F.
Urban
,
R.
Avriller
, and
A.
Levy Yeyati
, “
Nonlinear effects of phonon fluctuations on transport through nanoscale junctions
,”
Phys. Rev. B
82
,
121414(R)
(
2010
).
43.
M.
Galperin
,
A.
Nitzan
, and
M. A.
Ratner
, “
Resonant inelastic tunneling in molecular junctions
,”
Phys. Rev. B
73
,
045314
(
2006
).
44.
R.
Seoane Souto
,
A.
Levy Yeyati
,
A.
Martín-Rodero
, and
R. C.
Monreal
, “
Dressed tunneling approximation for electronic transport through molecular transistors
,”
Phys. Rev. B
89
,
085412
(
2014
).
45.
L.
Simine
and
D.
Segal
, “
Vibrational cooling, heating, and instability in molecular conducting unctions: Full counting statistics analysis
,”
Phys. Chem. Chem. Phys.
14
,
13820
(
2012
).
46.
S.
Maier
,
T. L.
Schmidt
, and
A.
Komnik
, “
Charge transfer statistics of a molecular quantum dot with strong electron-phonon interaction
,”
Phys. Rev. B
83
,
085401
(
2011
).
47.
G.
Schaller
,
T.
Krause
,
T.
Brandes
, and
M.
Esposito
, “
Single-electron transistor strongly coupled to vibrations: Counting statistics and fluctuation theorem
,”
New J. Phys.
15
,
033032
(
2015
).
48.
A.
Martín-Rodero
,
A.
Levy Yeyati
,
F.
Flores
, and
R. C.
Monreal
, “
Interpolative approach for electron-electron and electron-phonon interactions: From the Kondo to the polaronic regime
,”
Phys. Rev. B
78
,
235112
(
2008
);
R. C.
Monreal
and
A.
Martín-Rodero
, “
Equation of motion approach to the Anderson-Holstein Hamiltonian
,”
Phys. Rev. B
79
,
115140
(
2009
).
49.
P. S.
Cornaglia
,
D. R.
Grempel
, and
H.
Ness
, “
Quantum transport through a deformable molecular transistor
,”
Phys. Rev. B
71
,
075320
(
2005
).
50.
A.
Erpenbeck
,
R.
Härtle
,
M.
Bockstedte
, and
M.
Thoss
, “
Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions
,”
Phys. Rev. B
93
,
115421
(
2016
).
51.
H.-T.
Chen
,
G.
Cohen
,
A. J.
Millis
, and
D. R.
Reichman
, “
Anderson-Holstein model in two flavors of the noncrossing approximation
,”
Phys. Rev. B
93
,
174309
(
2016
).
52.
B.
Kubala
and
F.
Marquardt
, “
AC conductance through an interacting quantum dot
,”
Phys. Rev. B
81
,
115319
(
2010
).
53.
G.-H.
Ding
and
B.
Dong
, “
Phonon effects on the current noise spectra and the ac conductance of a single molecular junction
,”
J. Phys.: Condens. Matter
26
,
305301
(
2014
).
54.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
(
1959
).
55.
M.
Galperin
,
M. A.
Ratner
, and
A.
Nitzan
, “
Molecular transport junctions: Vibrational effects
,”
J. Phys.: Condens. Matter
19
,
103201
(
2007
).
56.
Y.
Utsumi
,
D. S.
Golubev
, and
G.
Schön
, “
Full counting statistics for a single-electron transistor: Nonequilibrium effects at intermediate conductance
,”
Phys. Rev. Lett.
96
,
086803
(
2006
).
57.
O.
Entin-Wohlman
,
Y.
Imry
, and
A.
Aharony
, “
Transport through molecular junctions with a nonequilibrium phonon population
,”
Phys. Rev. B
81
,
113408
(
2010
);
A similar problem had been encountered for a local moment coupled with a nonequilibrium electron gas, see, e.g,
A.
Rosch
,
J.
Paaske
,
J.
Kroha
, and
P.
Wölfle
, “
Nonequilibrium transport through a Kondo dot in a magnetic field: Perturbation theory and poor mans scaling
,”
Phys. Rev. Lett.
90
,
076804
(
2003
);
[PubMed]
O.
Parcollet
and
C.
Hooley
, “
Perturbative expansion of the magnetization in the out-of-equilibrium Kondo model
,”
Phys. Rev. Lett.
66
,
085315
(
2002
).
58.
C.
Emary
,
D.
Marcos
,
R.
Aguado
, and
T.
Brandes
, “
Frequency-dependent counting statistics in interacting nanoscale conductors
,”
Phys. Rev. B
76
,
161404(R)
(
2007
).
59.
J.
Tobiska
and
Yu. V.
Nazarov
, “
Inelastic interaction corrections and universal relations for full counting statistics in a quantum contact
,”
Phys. Rev. B
72
,
235328
(
2005
).
60.
H.
Förster
and
M.
Büttiker
, “
Fluctuation relations without microreversibility in nonlinear transport
,”
Phys. Rev. Lett.
101
,
136805
(
2008
).
61.
K.
Saito
and
Y.
Utsumi
, “
Symmetry in full counting statistics, fluctuation theorem, and relations among nonlinear transport coefficients in the presence of a magnetic field
,”
Phys. Rev. B
78
,
115429
(
2008
).
62.
Y.
Utsumi
and
K.
Saito
, “
Fluctuation theorem in a quantum-dot Aharonov-Bohm interferometer
,”
Phys. Rev. B
79
,
235311
(
2009
).
63.
D.
Andrieux
,
P.
Gaspard
,
T.
Monnai
, and
S.
Tasaki
, “
The fluctuation theorem for currents in open quantum systems
,”
New J. Phys.
11
,
043014
(
2009
).
64.
M.
Esposito
,
U.
Harbola
, and
S.
Mukamel
, “
Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems
,”
Rev. Mod. Phys.
81
,
1665
(
2009
).
65.
M.
Campisi
,
P.
Hänggi
, and
P.
Talkner
, “
Colloquium: Quantum fluctuation relations: Foundations and applications
,”
Rev. Mod. Phys.
83
,
771
(
2011
).
66.
A.
Altland
,
A.
De Martino
,
R.
Egger
, and
B.
Narozhny
, “
Fluctuation relations and rare realizations of transport observables
,”
Phys. Rev. Lett.
105
,
170601
(
2010
);
[PubMed]
A.
Altland
,
A.
De Martino
,
R.
Egger
, and
B.
Narozhny
, “
Transient fluctuation relations for time-dependent particle transport
,”
Phys. Rev. B
82
,
115323
(
2010
).
67.
R.
López
,
J. S.
Lim
, and
D.
Snchez
, “
Fluctuation relations for spintronics
,”
Phys. Rev. Lett.
108
,
246603
(
2012
).
68.
Y.
Utsumi
,
D. S.
Golubev
,
M.
Marthaler
,
K.
Saito
,
T.
Fujisawa
, and
G.
Schön
, “
Bidirectional single-electron counting and the fluctuation theorem
,”
Phys. Rev. B
81
,
125331
(
2010
).
69.
A. G.
Abanov
and
D. A.
Ivanov
, “
Allowed charge transfers between coherent conductors driven by a time-dependent scatterer
,”
Phys. Rev. Lett.
100
,
086602
(
2008
);
[PubMed]
A. G.
Abanov
and
D. A.
Ivanov
,
Phys. Rev. B
79
,
205315
(
2009
).
70.
C. N.
Yang
and
T. D.
Lee
, “
Statistical theory of equations of state and phase transitions. I. Theory of condensation
,”
Phys. Rev.
87
,
404
(
1952
);
T. D.
Lee
and
C. N.
Yang
, “
Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model
,”
Phys. Rev.
87
,
410
(
1952
).
71.
C.
Flindt
and
J. P.
Garrahan
, “
Trajectory phase transitions, Lee-Yang zeros, and high-order cumulants in full counting statistics
,”
Phys. Rev. Lett.
110
,
050601
(
2013
).
You do not currently have access to this content.