We combine a general formulation of microswimmer equations of motion with a numerical bead-shell model to calculate the hydrodynamic interactions with the fluid, from which the swimming speed, power, and efficiency are extracted. From this framework, a generalized Scallop theorem emerges. The applicability to arbitrary shapes allows for the optimization of the efficiency with respect to the swimmer geometry. We apply this scheme to “three-body swimmers” of various shapes and find that the efficiency is characterized by the single-body friction coefficient in the long-arm regime, while in the short-arm regime the minimal approachable distance becomes the determining factor. Next, we apply this scheme to a biologically inspired set of swimmers that propel using a rotating helical flagellum. Interestingly, we find two distinct optimal shapes, one of which is fundamentally different from the shapes observed in nature (e.g., bacteria).

1.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
,
Rep. Prog. Phys.
78
,
056601
(
2015
).
2.
W.
Poon
, in
Proceedings of the International School of Physics “Enrico Fermi,” Course CLXXXIV “Physics of Complex Colloids,”
edited by
C.
Bechinger
,
F.
Sciortino
, and
P.
Ziherl
, (
IOS, Amsterdam, SIF
,
Bologna
,
2013
), p.
317
.
3.
N. C.
Darnton
,
L.
Turner
,
S.
Rojevsky
, and
H. C.
Berg
,
J. Bacteriol.
189
,
1756
(
2007
).
4.
H. C.
Berg
and
R. A.
Anderson
,
Nature
245
,
380
(
1973
).
5.
M.
Silverman
and
M.
Simon
,
Nature
249
,
73
(
1974
).
6.
L.
Alvarez
,
B. M.
Friedrich
,
G.
Gompper
, and
U. B.
Kaupp
,
Trends Cell Biol.
24
,
198
(
2014
).
7.
H. S.
Fisher
,
L.
Giomi
,
H. E.
Hoekstra
, and
L.
Mahadevan
,
Proc. R. Soc. B
281
,
20140296
(
2014
).
8.
K. E.
Peyer
,
L.
Zhang
, and
B. J.
Nelson
,
Nanoscale
5
,
1259
(
2013
).
9.
V.
Iacovacci
,
G.
Lucarini
,
L.
Ricotti
,
P.
Dario
,
P. E.
Dupont
, and
A.
Menciassi
,
Biomed. Microdevices
17
,
63
(
2015
).
10.
E. M.
Purcell
,
Am. J. Phys.
45
,
3
(
1977
).
11.
L. E.
Becker
,
S. A.
Koehler
, and
H. A.
Stone
,
J. Fluid Mech.
490
,
15
(
2003
).
12.
B.
Chan
, “
Bio-inspired fluid locomotion
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
2009
.
13.
A.
Najafi
and
R.
Golestanian
,
Phys. Rev. E
69
,
062901
(
2004
).
14.
R.
Golestanian
and
A.
Ajdari
,
Phys. Rev. E
77
,
036308
(
2008
).
15.
D. J.
Earl
,
C. M.
Pooley
,
J. F.
Ryder
,
I.
Bredberg
, and
J. M.
Yeomans
,
J. Chem. Phys.
126
,
064703
(
2007
).
16.
G. P.
Alexander
,
C. M.
Pooley
, and
J. M.
Yeomans
,
J. Phys.: Condens. Matter
21
,
204108
(
2009
).
17.
B.
ten Hagen
,
R.
Wittkowski
,
D.
Takagi
,
F.
Kümmel
,
C.
Bechinger
, and
H.
Löwen
,
J. Phys.: Condens. Matter
27
,
194110
(
2015
).
18.
B.
Felderhof
,
Eur. Phys. J. E
37
,
110
(
2014
).
19.
V. A.
Vladimirov
,
J. Fluid Mech.
716
,
R1-1
R1-11
(
2013
).
20.
J. E.
Avron
,
O.
Kenneth
, and
D. H.
Oaknin
,
New J. Phys.
7
,
234
(
2005
).
21.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
,
Nature
437
,
862
(
2005
).
22.
E. E.
Keaveny
and
M. R.
Maxey
,
J. Fluid Mech.
598
,
293
(
2008
).
23.
P.
Tierno
,
R.
Golestanian
,
I.
Pagonabarraga
, and
F.
Sagués
,
J. Phys. Chem. B
112
,
16525
(
2008
).
24.
H.
Gadêlha
,
Regular Chaotic Dyn.
18
,
75
(
2013
).
25.
B. J.
Williams
,
S. V.
Anand
,
J.
Rajagopalan
, and
M. T. A.
Saif
,
Nat. Commun.
5
,
3081
(
2014
).
26.
L.
Zhang
,
K. E.
Peyer
, and
B. J.
Nelson
,
Lab Chip
10
,
2203
(
2010
).
27.
L.
Zhang
,
J. J.
Abbott
,
L.
Dong
,
K. E.
Peyer
,
B. E.
Kratochvil
,
H.
Zhang
,
C.
Bergeles
, and
B. J.
Nelson
,
Nano Lett.
9
,
3663
(
2009
).
28.
A.
Ghosh
and
P.
Fischer
,
Nano Lett.
9
,
2243
(
2009
).
29.
E. E.
Keaveny
,
S. W.
Walker
, and
M. J.
Shelley
,
Nano Lett.
13
,
531
(
2013
).
30.
J. W.
Swan
,
J. F.
Brady
,
R. S.
Moore
, and ChE 174 ,
Phys. Fluids
23
,
071901
(
2011
).
31.
T.
Scherr
,
C.
Wu
,
W. T.
Monroe
, and
K.
Nandakumar
,
Comput. Fluids
114
,
274
(
2015
).
32.
B.
Rodenborn
,
C.-H.
Chen
,
H. L.
Swinney
,
B.
Liu
, and
H. P.
Zhang
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
E338
(
2013
).
33.
J.
Garcia De La Torre
,
S.
Navarro
,
M.
Lopez Martinez
,
F.
Diaz
, and
J.
Lopez Cascales
,
Biophys. J.
67
,
530
(
1994
).
34.
B.
Carrasco
and
J. G.
de la Torre
,
Biophys. J.
76
,
3044
(
1999
).
35.
36.
H.
Brenner
and
M. E.
O’Neill
,
Chem. Eng. Sci.
27
,
1421
(
1972
).
37.

We find 𝒓i𝑭i for the three-body swimmers and 𝒓i=0 for the helical flagellum swimmers, such that 𝒓i×𝑭i=0 and hence i=1NFi=0, from which Eq. (3) follows. In general, the linear relation X˙N=Vjx˙j stays valid, but the expression for V is more involved.

38.
T.
Frankel
,
The Geometry of Physics: An Introduction
(
Cambridge University Press
,
2011
).
39.
A.
Shapere
and
F.
Wilczek
,
J. Fluid Mech.
198
,
587
(
1989
).
40.
B. U.
Felderhof
and
R. B.
Jones
,
Phys. A
202
,
94
(
1994
).
41.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
42.
E.
Wajnryb
,
K. A.
Mizerski
,
P. J.
Zuk
, and
P.
Szymczak
,
J. Fluid Mech.
731
,
R3
(
2013
).
43.
See http://www.netlib.org/lapack/ for information and downloadable versions of LAPACK.
44.
S.
Kim
and
S.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
Boston
,
1991
).
45.
E.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
2011
), Vol. 45.
47.
F.
Alouges
,
A.
DeSimone
, and
A.
Lefebvre
,
J. Nonlinear Sci.
18
,
277
(
2008
).
48.

There are also hydrodynamic simulation studies that capture the dynamics of the E. coli bacterium accurately.57–59 

49.
E.
Lauga
and
T. R.
Powers
,
Rep. Prog. Phys.
72
,
096601
(
2009
).
50.
S.
Chattopadhyay
,
R.
Moldovan
,
C.
Yeung
, and
X. L.
Wu
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
13712
(
2006
).
51.
D.
Bray
,
Cell Movements: From Molecules to Motility
(
Garland Science
,
2001
).
52.
53.
T.
Fujita
and
T.
Kawai
,
JSME Int. J., Ser. C
44
,
952
(
2001
).
54.
H.
Shum
,
E.
Gaffney
, and
D.
Smith
,
Proc. R. Soc. A
466
,
1725
1748
(
2010
).
55.
B. W.
Kwaadgras
,
T. H.
Besseling
,
T. J.
Coopmans
,
A.
Kuijk
,
A.
Imhof
,
A.
van Blaaderen
,
M.
Dijkstra
, and
R.
van Roij
,
Phys. Chem. Chem. Phys.
16
,
22575
(
2014
).
56.
J. W.
Swan
and
J. F.
Brady
,
Phys. Fluids
19
,
113306
(
2007
).
57.
J.
Hu
,
M.
Yang
,
G.
Gompper
, and
R. G.
Winkler
,
Soft Matter
11
,
7867
(
2015
).
58.
N.
Watari
and
R. G.
Larson
,
Biophys. J.
98
,
12
(
2010
).
59.
M.
Kong
,
Y.
Wu
,
G.
Li
, and
R. G.
Larson
,
Soft Matter
11
,
1572
(
2015
).

Supplementary Material

You do not currently have access to this content.