In this work, we describe new experimental setups for Fluorescence Correlation Spectroscopy (FCS) where a long working distance objective is used. Using these setups, FCS measurements in a broad temperature range for a small sample volume of about 50 μl can be performed. The use of specially designed cells and a dry long working distance objective was essential for avoiding temperature gradients in the sample. The performance of the new setups and a traditional FCS setup with immersion objectives is compared. The FCS data in combination with the Stokes-Einstein (SE) relation were used to obtain the values of the nanoviscosity of a fluid. We show for selected molecular van der Waals supercooled liquids that despite the fact that in these systems, a characteristic length scale can be defined, the nanoviscosity obtained from FCS is in a very good agreement with the macroscopic (rheometric) viscosity of the sample in a broad temperature range. This result corroborates the applicability of the SE relation to supercooled liquids at temperatures above 1.2 Tg. We also show that the temperature dependent size of thermoresponsive microgel particles can be determined by FCS using the designed cells and a long working distance objective in a broader size range without a need to use the correction procedure since the size correction is proportional to the square of the ratio of the hydrodynamic radius to the confocal volume size.

1.
K.
Koynov
and
H.-J.
Butt
,
Curr. Opin. Colloid Interface Sci.
17
,
377
387
(
2012
).
2.
T.
Cherdhirankorn
,
V.
Harmandaris
,
A.
Juhari
,
P.
Voudouris
,
G.
Fytas
,
K.
Kremer
, and
K.
Koynov
,
Macromolecules
42
,
4858
4866
(
2009
).
3.
J.
Xie
,
M.
Doroshenko
,
U.
Jonas
,
H.-J.
Butt
, and
K.
Koynov
,
ACS Macro Lett.
5
,
190
194
(
2016
).
4.
M. I.
Wallace
,
L.
Ying
,
S.
Balasubramanian
, and
D.
Klenerman
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
5584
5589
(
2001
).
5.
K.
Sozański
,
A.
Wiśniewska
,
T.
Kalwarczyk
, and
R.
Hołyst
,
Phys. Rev. Lett.
111
,
228301
(
2013
).
6.
C. B.
Müller
and
W.
Richtering
,
Colloid Polym. Sci.
286
,
1215
1222
(
2008
).
7.
E.
Banachowicz
,
A.
Patkowski
,
G.
Meier
,
K.
Klamecka
, and
J.
Gapiński
,
Langmuir
30
,
8945
8955
(
2014
).
8.
T.
Deptuła
,
J.
Buitenhuis
,
M.
Jarzębski
,
A.
Patkowski
, and
J.
Gapinski
,
Langmuir
31
,
6681
6687
(
2015
).
9.
M.
Jarzębski
,
Y.
Zhangc
,
T.
Śliwa
,
J.
Mazuryk
,
T.
Deptuła
,
M.
Kucinska
,
M.
Murias
,
J.
Buitenhuis
,
J.
Gapiński
, and
A.
Patkowski
,
J. Fluorine Chem.
183
,
92
99
(
2016
).
10.
A. J.
Banchio
,
G.
Nägele
, and
J.
Bergenholtz
,
J. Chem. Phys.
111
,
8721
8740
(
1999
).
11.
K.
Kang
,
J.
Gapinski
,
M. P.
Lettinga
,
J.
Buitenhuis
,
G.
Meier
,
M.
Ratajczyk
,
J. K. G.
Dhont
, and
A.
Patkowski
,
J. Chem. Phys.
122
,
044905
(
2005
).
12.
K.
Kang
,
A.
Wilk
,
J.
Buitenhuis
,
A.
Patkowski
, and
J. K. G.
Dhont
,
J. Chem. Phys.
124
,
044907
(
2006
).
13.
K.
Kang
,
A.
Wilk
,
A.
Patkowski
, and
J. K. G.
Dhont
,
J. Chem. Phys.
126
,
214501
(
2007
).
14.
J.
Szymański
,
A.
Patkowski
,
A.
Wilk
,
P.
Garstecki
, and
R.
Hołyst
,
J. Phys. Chem. B
110
,
25593
25597
(
2006
).
15.
R.
Holyst
,
A.
Bielejewska
,
J.
Szymanski
,
A.
Wilk
,
A.
Patkowski
,
J.
Gapinski
,
A.
Zywocinski
,
T.
Kalwarczyk
,
E.
Kalwarczyk
,
M.
Tabaka
,
N.
Ziebacz
, and
S. A.
Wieczorek
,
Phys. Chem. Chem. Phys.
11
,
9025
(
2009
).
16.
T.
Kalwarczyk
,
N.
Ziębacz
,
A.
Bielejewska
,
E.
Zaboklicka
,
K.
Koynov
,
J.
Szymański
,
A.
Wilk
,
A.
Patkowski
,
J.
Gapiński
,
H.-J.
Butt
, and
R.
Hołyst
,
Nano Lett.
11
(
5
),
2157
2163
(
2011
).
17.
S. A.
Mackowiak
,
T. K.
Herman
, and
L. J.
Kaufman
,
J. Chem. Phys.
131
,
244513
(
2009
).
18.
H.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
108
(
1999
).
19.
L. M.
Leone
and
L. J.
Kaufman
,
J. Chem. Phys.
138
,
12A524
(
2013
).
20.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
128
(
2000
).
21.
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
G.
Fleischer
,
Z. Phys. B
88
,
195
(
1992
).
22.
M. T.
Cicerone
and
M. D.
Ediger
,
J. Phys. Chem.
97
,
10489
(
1993
).
23.
E.
Rossler
and
P.
Eiermann
,
J. Chem. Phys.
100
,
5237
(
1994
).
24.
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
104
,
7210
(
1996
).
25.
S. F.
Swallen
,
P. A.
Bonvallet
,
R. J.
McMahon
, and
M. D.
Eiger
,
Phys. Rev. Lett.
90
,
015901
, (
2003
).
26.
T.
Kanaya
,
A.
Patkowski
,
E. W.
Fischer
,
J.
Seils
,
H.
Gläser
, and
K.
Kaji
,
Acta Polym.
45
,
137
142
(
1994
).
27.
T.
Kanaya
,
A.
Patkowski
,
E. W.
Fischer
,
J.
Seils
,
H.
Gläser
, and
K.
Kaji
,
Macromolecules
28
,
7831
7836
(
1995
).
28.
W.
Steffen
,
E. W.
Fischer
, and
A.
Patkowski
, in
Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials
, edited by
M.
Giordano
,
D.
Leporini
, and
M. P.
Tosi
(
World Scientific
,
Singapore
,
1996
), p.
159
.
29.
A.
Patkowski
,
Th.
Thurn-Albrecht
,
E.
Banachowicz
,
W.
Steffen
,
P.
Boesecke
,
T.
Narayanan
, and
E. W.
Fischer
,
Phys. Rev. E
61
(
6
),
6909
6913
(
2000
).
30.
A.
Patkowski
,
E. W.
Fischer
,
W.
Steffen
,
H.
Gläser
,
M.
Baumann
,
T.
Ruths
, and
G.
Meier
,
Phys. Rev. E
63
,
061503
(
2001
).
31.
A.
Patkowski
,
H.
Gläser
,
Y.
Kanaya
, and
E. W.
Fischer
,
Phys. Rev. E
64
,
031503
(
2001
).
32.
C.
Manzo
and
M. F.
Garcia-Parajo
,
Rep. Prog. Phys.
78
,
124601
(
2015
).
33.
J.
García de la Torre
,
G.
del Rio
, and
A.
Ortega
,
J. Phys. Chem. B
111
,
955
961
(
2007
).
34.
J.
Garcia de la Torre
,
S.
Navarro
,
M. C.
Lopez Martinez
,
F. G.
Diaz
, and
J.
Lopez Cascales
,
Biophys. J.
67
,
530
531
(
1994
).
35.
K.
Goossens
,
M.
Prior
,
V.
Pacheco
,
D.
Willbold
,
K.
Müllen
,
J.
Enderlein
,
J.
Hofkens
, and
I.
Gregor
,
ACS Nano
9
,
7360
7373
(
2015
).
36.
G.
Meier
,
B.
Gerharz
,
D.
Boese
, and
E. W.
Fischer
,
J. Chem. Phys.
94
,
3050
3059
(
1991
).
37.
E. P.
Petrov
and
P.
Schwille
, “
State of the art and novel trends in fluorescence correlation spectroscopy
,” in
Standardization and Quality Assurance in Fluorescence Measurements: State of the Art and Future Challenges
, edited by
U.
Resch-Genger
(
Springer
,
Berlin, Heidelberg, New York
,
2008
).
38.
G.
Nägele
,
J. K. G.
Dhont
, and
G.
Meier
, “
Diffusion in colloidal and polymeric systems
,” in
Diffusion in Condensed Matter
, 2nd ed., edited by
P.
Heitjans
and
J.
Kärger
(
Spcollarer-Verlag
,
Berlin
,
2004
).
39.
D. E.
Koppel
,
Phys. Rev. A
10
,
1938
1945
(
1974
).
40.
J.
Enderlein
,
I.
Gregor
,
D.
Patra
,
T.
Dertinger
, and
U. B.
Kaupp
,
ChemPhysChem
6
,
2324
2336
(
2005
).
41.
M.
Cukierman
,
J. W.
Lane
, and
D. R.
Uhlmann
,
J. Chem. Phys.
59
,
3639
3645
(
1973
).
42.
E.
Mc Laughlin
and
A. R.
Ubbelohde
,
Trans. Faraday Soc.
54
,
1804
(
1958
).
43.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
,
Science
313
,
1642
1645
(
2006
).

Supplementary Material

You do not currently have access to this content.