We introduce and investigate the escape problem for random walkers that may eventually die, decay, bleach, or lose activity during their diffusion towards an escape or reactive region on the boundary of a confining domain. In the case of a first-order kinetics (i.e., exponentially distributed lifetimes), we study the effect of the associated death rate onto the survival probability, the exit probability, and the mean first passage time. We derive the upper and lower bounds and some approximations for these quantities. We reveal three asymptotic regimes of small, intermediate, and large death rates. General estimates and asymptotics are compared to several explicit solutions for simple domains and to numerical simulations. These results allow one to account for stochastic photobleaching of fluorescent tracers in bio-imaging, degradation of mRNA molecules in genetic translation mechanisms, or high mortality rates of spermatozoa in the fertilization process. Our findings provide a mathematical ground for optimizing storage containers and materials to reduce the risk of leakage of dangerous chemicals or nuclear wastes.

1.
S.
Redner
,
A Guide to First Passage Processes
(
Cambridge University Press
,
Cambridge
,
2001
).
2.
First-Passage Phenomena and Their Applications
, edited by
R.
Metzler
,
G.
Oshanin
, and
S.
Redner
(
World Scientific
,
Singapore
,
2014
).
3.
O.
Bénichou
and
R.
Voituriez
, “
From first-passage times of random walks in confinement to geometry-controlled kinetics
,”
Phys. Rep.
539
,
225
284
(
2014
).
4.
D.
Holcman
and
Z.
Schuss
, “
The narrow escape problem
,”
SIAM Rev.
56
,
213
257
(
2014
).
5.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
6.
P. C.
Bressloff
and
J. M.
Newby
, “
Stochastic models of intracellular transport
,”
Rev. Mod. Phys.
85
,
135
196
(
2013
).
7.
R.
Zwanzig
and
A.
Szabo
, “
Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces
,”
Biophys. J.
60
,
671
678
(
1991
).
8.
I. V.
Grigoriev
,
Y. A.
Makhnovskii
,
A. M.
Berezhkovskii
, and
V. Y.
Zitserman
, “
Kinetics of escape through a small hole
,”
J. Chem. Phys.
116
,
9574
9577
(
2002
).
9.
D.
Holcman
and
Z.
Schuss
, “
Escape through a small opening: Receptor trafficking in a synaptic membrane
,”
J. Stat. Phys.
117
,
975
1014
(
2004
).
10.
Z.
Schuss
,
A.
Singer
, and
D.
Holcman
, “
The narrow escape problem for diffusion in cellular microdomains
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
16098
(
2007
).
11.
G. M.
Viswanathan
,
S. V.
Buldyrev
,
S.
Havlin
,
M. G. E.
da Luz
,
E. P.
Raposok
, and
H. E.
Stanley
, “
Optimizing the success of random searches
,”
Nature
401
,
911
914
(
1999
).
12.
M. J.
Ward
and
J. B.
Keller
, “
Strong localized perturbations of Eigenvalue problems
,”
SIAM J. Appl. Math.
53
,
770
798
(
1993
).
13.
A.
Singer
,
Z.
Schuss
,
D.
Holcman
, and
R. S.
Eisenberg
, “
Narrow escape. Part I
,”
J. Stat. Phys.
122
,
437
463
(
2006
).
14.
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
, “
Narrow escape. Part II. The circular disk
,”
J. Stat. Phys.
122
,
465
489
(
2006
).
15.
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
, “
Narrow escape. Part III. Riemann surfaces and non-smooth domains
,”
J. Stat. Phys.
122
,
491
509
(
2006
).
16.
S.
Pillay
,
M. J.
Ward
,
A.
Peirce
, and
T.
Kolokolnikov
, “
An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: Two-Dimensional domains
,”
Multiscale Model. Simul.
8
,
803
835
(
2010
).
17.
A. F.
Cheviakov
,
M. J.
Ward
, and
R.
Straube
, “
An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere
,”
Multiscale Model. Simul.
8
,
836
870
(
2010
).
18.
A. F.
Cheviakov
,
A. S.
Reimer
, and
M. J.
Ward
, “
Mathematical modeling and numerical computation of narrow escape problems
,”
Phys. Rev. E
85
,
021131
(
2012
).
19.
D. S.
Grebenkov
, “
Universal formula for the mean first passage time in planar domains
,”
Phys. Rev. Lett.
117
,
260201
(
2016
).
20.
E.
Eden
 et al, “
Proteome half-life dynamics in living human cells
,”
Science
331
,
764
(
2011
).
21.
L.
Alvarez
,
B. M.
Friedrich
,
G.
Gompper
, and
U. B.
Kaupp
, “
The computational sperm cell
,”
Trends Cell Biol.
24
,
198
207
(
2014
).
22.
J.
Yang
,
I.
Kupka
,
Z.
Schuss
, and
D.
Holcman
, “
Search for a small egg by spermatozoa in restricted geometries
,”
J. Math. Biol.
73
,
423
446
(
2016
).
23.
B.
Meerson
and
S.
Redner
, “
Mortality, redundancy, and diversity in stochastic search
,”
Phys. Rev. Lett.
114
,
198101
(
2015
).
24.
E.
Abad
,
S. B.
Yuste
, and
K.
Lindenberg
, “
Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks
,”
Phys. Rev. E
81
,
031115
(
2010
).
25.
E.
Abad
,
S. B.
Yuste
, and
K.
Lindenberg
, “
Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach
,”
Phys. Rev. E
86
,
061120
(
2012
).
26.
E.
Abad
,
S. B.
Yuste
, and
K.
Lindenberg
, “
Evanescent continuous-time random walks
,”
Phys. Rev. E
88
,
062110
(
2013
).
27.
S. B.
Yuste
,
E.
Abad
, and
K.
Lindenberg
, “
Exploration and trapping of mortal random walkers
,”
Phys. Rev. Lett.
110
,
220603
(
2013
).
28.
B.
Meerson
, “
The number statistics and optimal history of non-equilibrium steady states of mortal diffusing particles
,”
J. Stat. Mech.
2015
,
P05004
.
29.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Exit time distribution in spherically symmetric two-dimensional domains
,”
J. Stat. Phys.
158
,
192
230
(
2015
).
30.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
Berlin
,
1985
).
31.
C.
Caginalp
and
X.
Chen
, “
Analytical and numerical results for an escape problem
,”
Arch. Ration. Mech. Anal.
203
,
329
342
(
2012
).
32.
J. S.
Marshall
, “
Analytical solutions for an escape problem in a disc with an arbitrary distribution of exit holes along its boundary
,”
J. Stat. Phys.
165
,
920
952
(
2016
).
33.
A.
Godec
and
R.
Metzler
, “
Universal proximity effect in target search kinetics in the few-encounter limit
,”
Phys. Rev. X
6
,
041037
(
2016
).
34.
A. F.
Cheviakov
and
M.
Ward
, “
Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps
,”
Math. Comput. Modell.
53
,
1394
1409
(
2011
).
35.
S. A.
Isaacson
and
J.
Newby
, “
Uniform asymptotic approximation of diffusion to a small target
,”
Phys. Rev. E
88
,
012820
(
2013
).
36.
P. L.
Krapivsky
,
S.
Redner
, and
E.
Ben-Naim
,
A Kinetic View of Statistical Physics
(
Cambridge University Press
,
2010
).
37.
D. S.
Grebenkov
and
G.
Oshanin
, “
Diffusive escape through a narrow opening: New insights into a classic problem
,”
Phys. Chem. Chem. Phys.
19
,
2723
2739
(
2017
).
38.
R.
Milo
and
R.
Philipps
,
Cell Biology by the Numbers
(
Garland Science and Taylor and Francis Group
,
2015
).
39.
K. Z.
Pan
,
T. E.
Saunders
,
I.
Flor-Parra
,
M.
Howard
, and
F.
Chang
, “
Cortical regulation of cell size by a sizer cdr2p
,”
eLife
3
,
e02040
(
2014
).
40.
F. C.
Collins
and
G. E.
Kimball
, “
Diffusion-controlled reaction rates
,”
J. Coll. Sci.
4
,
425
(
1949
).
41.
H.
Sano
and
M.
Tachiya
, “
Partially diffusion-controlled recombination
,”
J. Chem. Phys.
71
,
1276
(
1979
).
42.
B.
Sapoval
, “
General formulation of Laplacian transfer across irregular surfaces
,”
Phys. Rev. Lett.
73
,
3314
(
1994
).
43.
O.
Bénichou
,
M.
Moreau
, and
G.
Oshanin
, “
Kinetics of stochastically gated diffusion-limited reactions and geometry of random walk trajectories
,”
Phys. Rev. E
61
,
3388
(
2000
).
44.
D. S.
Grebenkov
, “
Partially reflected brownian motion: A stochastic approach to transport phenomena
,” in
Focus on Probability Theory
, edited by
L. R.
Velle
(
Nova Science Publishers
,
2006
), pp.
135
169
.
45.
A.
Singer
,
Z.
Schuss
,
A.
Osipov
, and
D.
Holcman
, “
Partially reflected diffusion
,”
SIAM J. Appl. Math.
68
,
844
(
2008
).
46.
P. C.
Bressloff
,
B. A.
Earnshaw
, and
M. J.
Ward
, “
Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps
,”
SIAM J. Appl. Math.
68
,
1223
(
2008
).
47.
D. S.
Grebenkov
, “
Analytical representations of the spread harmonic measure density
,”
Phys. Rev. E
91
,
052108
(
2015
).
48.
D. S.
Grebenkov
, “
Searching for partially reactive sites: Analytical results for spherical targets
,”
J. Chem. Phys.
132
,
034104
(
2010
).
49.
D. S.
Grebenkov
, “
Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary
,”
Phys. Rev. E
81
,
021128
(
2010
).
50.
F.
Rojo
,
H. S.
Wio
, and
C. E.
Budde
, “
Narrow-escape-time problem: The imperfect trapping case
,”
Phys. Rev. E
86
,
031105
(
2012
).
51.
O.
Bénichou
,
D. S.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Optimal reaction time for surface-mediated diffusion
,”
Phys. Rev. Lett.
105
,
150606
(
2010
).
52.
O.
Bénichou
,
D. S.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Mean first-passage time of surface-mediated diffusion in spherical domains
,”
J. Stat. Phys.
142
,
657
685
(
2011
).
53.
F.
Rojo
and
C. E.
Budde
, “
Enhanced diffusion through surface excursion: A master-equation approach to the narrow-escape-time problem
,”
Phys. Rev. E
84
,
021117
(
2011
).
54.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Kinetics of active surface-mediated diffusion in spherically symmetric domains
,”
J. Stat. Phys.
147
,
891
918
(
2012
).
55.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Exact mean exit time for surface-mediated diffusion
,”
Phys. Rev. E
86
,
041135
(
2012
).
56.
F.
Rojo
,
C. E.
Budde
, Jr.
,
H. S.
Wio
, and
C. E.
Budde
, “
Enhanced transport through desorption-mediated diffusion
,”
Phys. Rev. E
87
,
012115
(
2013
).
57.
S. B.
Yuste
and
K.
Lindenberg
, “
Subdiffusive target problem: Survival probability
,”
Phys. Rev. E
76
,
051114
(
2007
).
58.
J.
Klafter
and
I. M.
Sokolov
,
First Steps in Random Walks: From Tools to Applications
(
Oxford University Press
,
2011
).
59.
J.-P.
Bouchaud
and
A.
Georges
, “
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
,”
Phys. Rep.
195
,
127
293
(
1990
).
60.
R.
Metzler
,
J.-H.
Jeon
,
A.
Cherstvy
, and
E.
Barkai
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
24164
(
2014
).
61.
E. B.
Davies
,
Heat Kernels and Spectral Theory
(
Cambridge University Press
,
Cambridge
,
1989
).
62.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic Press
,
1980
).
You do not currently have access to this content.