We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid–liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core–shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

1.
A. V.
Brukhno
,
J.
Anwar
,
R.
Davidchack
, and
R.
Handel
,
J. Phys.: Condens. Matter
20
,
494243
(
2008
).
2.
D.
Quigley
and
P. M.
Rodger
,
J. Chem. Phys.
128
,
154518
(
2008
).
3.
A.
Reinhardt
and
J. P. K.
Doye
,
J. Chem. Phys.
136
,
054501
(
2012
).
4.
A.
Reinhardt
and
J. P. K.
Doye
,
J. Chem. Phys.
139
,
096102
(
2013
).
5.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
,
J. Am. Chem. Soc.
135
,
15008
(
2013
).
6.
N. J.
English
,
J. Chem. Phys.
141
,
234501
(
2014
).
7.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
,
J. Chem. Phys.
144
,
034501
(
2016
).
8.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
,
Phys. Chem. Chem. Phys.
13
,
19807
(
2011
).
9.
A.
Haji-Akbari
and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
10582
(
2015
).
10.
D. R.
Nutt
and
A. J.
Stone
,
Langmuir
20
,
8715
(
2004
).
11.
L.
Lupi
,
A.
Hudait
, and
V.
Molinero
,
J. Am. Chem. Soc.
136
,
3156
(
2014
).
12.
S. J.
Cox
,
S. M.
Kathmann
,
B.
Slater
, and
A.
Michaelides
,
J. Chem. Phys.
142
,
184704
(
2015
).
13.
S. J.
Cox
,
S. M.
Kathmann
,
B.
Slater
, and
A.
Michaelides
,
J. Chem. Phys.
142
,
184705
(
2015
).
14.
T. L.
Malkin
,
B. J.
Murray
,
C. G.
Salzmann
,
V.
Molinero
,
S. J.
Pickering
, and
T. F.
Whale
,
Phys. Chem. Chem. Phys.
17
,
60
(
2015
).
15.
D.
Quigley
,
J. Chem. Phys.
141
,
121101
(
2014
).
16.
T. L.
Malkin
,
B. J.
Murray
,
A. V.
Brukhno
,
J.
Anwar
, and
C. G.
Salzmann
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
1041
(
2012
).
17.
J.
Huang
and
L. S.
Bartell
,
J. Phys. Chem.
99
,
3924
(
1995
).
18.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2009
).
19.
E. A.
Engel
,
B.
Monserrat
, and
R. J.
Needs
,
Phys. Rev. X
5
,
021033
(
2015
).
20.
G. P.
Johari
,
Philos. Mag. Part B
78
,
375
(
1998
).
21.
M.
Asta
,
J. J.
Hoyt
, and
A.
Karma
,
Phys. Rev. B
66
,
100101
(
2002
).
22.
J. R.
Morris
,
Phys. Rev. B
66
,
144104
(
2002
).
23.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
116
,
9352
(
2002
).
24.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
119
,
3920
(
2003
).
25.
J.
Benet
,
L. G.
MacDowell
, and
E.
Sanz
,
Phys. Chem. Chem. Phys.
16
,
22159
(
2014
).
26.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
27.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
,
J. Phys. Chem. C
120
,
8068
(
2016
).
28.
J.
Abascal
,
E.
Sanz
,
R.
Fernandez
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
29.
E. B.
Moore
and
V.
Molinero
,
Phys. Chem. Chem. Phys.
13
,
20008
(
2011
).
30.
A.
Hudait
,
S.
Qiu
,
L.
Lupi
, and
V.
Molinero
,
Phys. Chem. Chem. Phys.
18
,
9544
(
2016
).
31.
J.
Russo
,
F.
Romano
, and
H.
Tanaka
,
Nat. Mater.
13
,
733
(
2014
).
32.
D.
Quigley
,
D.
Alfé
, and
B.
Slater
,
J. Chem. Phys.
141
,
161102
(
2014
).
33.
J. J.
Hoyt
,
M.
Asta
, and
A.
Karma
,
Phys. Rev. Lett.
86
,
5530
(
2001
).
34.
A.
van de Walle
,
Q.
Hong
,
L.
Miljacic
,
C. B.
Gopal
,
S.
Demers
,
G.
Pomrehn
,
A.
Kowalski
, and
P.
Tiwary
,
Phys. Rev. B
89
,
184101
(
2014
).
35.
A.
van de Walle
,
M.
Asta
, and
G.
Ceder
,
Calphad
26
,
539
(
2002
).
36.
A. H.
Nguyen
and
V.
Molinero
,
J. Phys. Chem. B
119
,
9369
(
2015
).
37.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. Lett.
47
,
1297
(
1981
).
38.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
39.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
40.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
,
J. Phys. A
39
,
5629
(
2006
).
41.
J. D. H.
Donnay
and
D.
Harker
,
Am. Mineral.
22
,
446
(
1937
).
42.
B.
Cheng
,
G. A.
Tribello
, and
M.
Ceriotti
,
Phys. Rev. B
92
,
180102
(
2015
).
43.
D. T.
Limmer
and
D.
Chandler
,
J. Chem. Phys.
137
,
044509
(
2012
).
44.
S. R.
Wilson
,
K. G. S. H.
Gunawardana
, and
M. I.
Mendelev
,
J. Chem. Phys.
142
,
134705
(
2015
).
45.
D.
Turnbull
,
J. Appl. Phys.
21
,
1022
(
1950
).
46.
A.
Bogdan
,
J. Chem. Phys.
106
,
1921
(
1997
).
47.
Y.
Lifanov
,
B.
Vorselaars
, and
D.
Quigley
,
J. Chem. Phys.
145
,
211912
(
2016
).
48.
J. R.
Espinosa
,
A.
Zaragoza
,
P.
Rosales-Pelaez
,
C.
Navarro
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
,
Phys. Rev. Lett.
117
,
135702
(
2016
).
49.
J.
Benet
,
L. G.
MacDowell
, and
E.
Sanz
,
J. Chem. Phys.
142
,
134706
(
2015
).
50.
R. E.
Rozas
and
J.
Horbach
,
Europhys. Lett.
93
,
26006
(
2011
).

Supplementary Material

You do not currently have access to this content.