Glasses are nonequilibrium materials that continuously relax toward the metastable supercooled liquid state. As such, the properties of a glass depend on both its composition and thermal history. When an initially cooled glass is subjected to additional thermal cycles, relaxation during the heat treatment is accelerated, leading to changes in the macroscopic properties of the glass. This relaxation behavior is intrinsic to the glassy state and of critical interest to the high-tech glass industry. In many practical cases, the magnitude of the relaxation is less important than the variability of the relaxation effects due to slight variations in the thermal history experienced by the glass. These fluctuations in thermal history can occur either during the initial glass formation or during the subsequent heat treatment cycle(s). Here we calculate the variation in relaxation behavior using a detailed enthalpy landscape model, showing that the relaxation variability can be reduced dramatically by increasing the fragility of the system.

1.
A. K.
Varshneya
,
Fundamentals of Inorganic Glasses
, 2nd ed. (
Society of Glass Technology
,
Sheffield, UK
,
2006
).
2.
P. K.
Gupta
and
J. C.
Mauro
,
J. Chem. Phys.
126
,
224504
(
2007
).
3.
J. C.
Mauro
,
P. K.
Gupta
, and
R. J.
Loucks
,
J. Chem. Phys.
126
,
184511
(
2007
).
4.
J. C.
Mauro
,
R. J.
Loucks
, and
S.
Sen
,
J. Chem. Phys.
133
,
164503
(
2010
).
5.
J. C.
Mauro
,
R. J.
Loucks
,
A. K.
Varshneya
, and
P. K.
Gupta
,
Sci. Model. Simul.
15
,
241
(
2008
).
6.
J. C.
Mauro
and
M. M.
Smedskjaer
,
J. Non-Cryst. Solids
396-397
,
41
(
2014
).
7.
M.
Micoulaut
,
Rep. Prog. Phys.
79
,
066504
(
2016
).
8.
K. D.
Vargheese
,
A.
Tandia
, and
J. C.
Mauro
,
J. Chem. Phys.
132
,
194501
(
2010
).
9.
J. C.
Mauro
,
S.
Soyer Uzun
,
W.
Bras
, and
S.
Sen
,
Phys. Rev. Lett.
102
,
155506
(
2009
).
10.
J. C.
Mauro
,
J. Non-Cryst. Solids
357
,
3520
(
2011
).
11.
O.
Gulbiten
,
J. C.
Mauro
, and
P.
Lucas
,
J. Chem. Phys.
138
,
244504
(
2014
).
12.
A. K.
Varshneya
,
Int. J. Appl. Glass Sci.
1
,
131
(
2010
).
13.
A. K.
Varshneya
,
J. Non-Cryst. Solids
356
,
2289
(
2010
).
14.
L.
Wondraczek
,
J. C.
Mauro
,
J.
Eckert
,
U.
Kühn
,
J.
Horbach
,
J.
Deubener
, and
T.
Rouxel
,
Adv. Mater.
23
,
4578
(
2011
).
15.
J. C.
Mauro
,
A.
Tandia
,
K. D.
Vargheese
,
Y. Z.
Mauro
, and
M. M.
Smedskjaer
,
Chem. Mater.
28
,
4267
(
2016
).
16.
J. C.
Mauro
,
A. J.
Ellison
, and
L. D.
Pye
,
Int. J. Appl. Glass Sci.
4
,
64
(
2013
).
17.
A.
Ellison
and
I. A.
Cornejo
,
Int. J. Appl. Glass Sci.
1
,
87
(
2010
).
18.
J. C.
Mauro
,
C. S.
Philip
,
D. J.
Vaughn
, and
M. S.
Pambianchi
,
Int. J. Appl. Glass Sci.
5
,
2
(
2014
).
19.
F. H.
Stillinger
,
J. Phys. Chem. B
102
,
2807
(
1998
).
20.
T. F.
Middleton
and
D. J.
Wales
,
J. Chem. Phys.
118
,
4583
(
2003
).
21.
J. C.
Mauro
,
R. J.
Loucks
, and
J.
Balakrishnan
,
J. Phys. Chem. B
110
,
5005
(
2006
).
22.
J. C.
Mauro
and
R. J.
Loucks
,
Phys. Rev. B
76
,
174202
(
2007
).
23.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
24.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
28
,
2408
(
1983
).
25.
F. H.
Stillinger
,
J. Chem. Phys.
88
,
7818
(
1988
).
26.
P. G.
Debenedetti
,
F. H.
Stillinger
,
T. M.
Truskett
, and
C. J.
Roberts
,
J. Phys. Chem. B
103
,
7390
(
1999
).
27.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature
410
,
259
(
2001
).
28.
F. H.
Stillinger
and
P. G.
Debenedetti
,
J. Chem. Phys.
116
,
3353
(
2002
).
29.
M.
Potuzak
,
J. C.
Mauro
,
T. J.
Kiczenski
,
A. J.
Ellison
, and
D. C.
Allan
,
J. Chem. Phys.
133
,
091102
(
2010
).
30.
J. C.
Mauro
and
A. K.
Varshneya
,
J. Am. Ceram. Soc.
89
,
1091
(
2006
).
31.
J. C.
Mauro
and
A. K.
Varshneya
,
Am. Ceram. Soc. Bull.
85
,
25
(
2006
).
32.
J. C.
Mauro
,
R. J.
Loucks
,
J.
Balakrishnan
, and
A. K.
Varshneya
,
J. Non-Cryst. Solids
353
,
1274
(
2007
).
33.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford, UK
,
2001
).
34.
J. C.
Mauro
,
R. J.
Loucks
, and
J.
Balakrishnan
,
J. Phys. Chem. A
109
,
9578
(
2005
).
35.
J. C.
Mauro
,
R. J.
Loucks
,
J.
Balakrishnan
, and
S.
Raghavan
,
J. Chem. Phys.
126
,
194103
(
2007
).
36.
J. C.
Mauro
,
R. J.
Loucks
, and
P. K.
Gupta
,
J. Phys. Chem. A
111
,
7957
(
2007
).
37.
J. C.
Mauro
and
A. K.
Varshneya
,
Phys. Rev. B
71
,
214105
(
2005
).
38.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
39.
A. K.
Wilson
,
D. E.
Woon
,
K. A.
Peterson
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
110
,
7667
(
1999
).
40.
J. C.
Mauro
,
R. J.
Loucks
,
J.
Balakrishnan
, and
A. K.
Varshneya
,
J. Non-Cryst. Solids
353
,
1268
(
2007
).
41.
A. N.
Sreeram
,
A. K.
Varshneya
, and
D. R.
Swiler
,
J. Non-Cryst. Solids
128
,
294
(
1991
).
42.
Q.
Zheng
and
J. C.
Mauro
,
J. Am. Ceram. Soc.
100
,
6
(
2017
).
43.
C. A.
Angell
,
J. Non-Cryst. Solids
73
,
1
(
1985
).
44.
C. A.
Angell
,
J. Non-Cryst. Solids
102
,
205
(
1988
).
45.
C. A.
Angell
,
J. Non-Cryst. Solids
131-133
,
13
(
1991
).
46.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
47.
R.
Böhmer
and
C. A.
Angell
,
Phys. Rev. B
45
,
10091
(
1992
).
48.
Q.
Zheng
,
J. C.
Mauro
,
A. J.
Ellison
,
M.
Potuzak
, and
Y.
Yue
,
Phys. Rev. B
83
,
212202
(
2011
).
49.
K.
Niss
,
C.
Dalle-Ferrier
,
G.
Tarjus
, and
C.
Alba-Simionesco
,
J. Phys.: Condens. Matter
19
,
076102
(
2007
).
50.
L.
Hornbøll
and
Y.
Yue
,
J. Non-Cryst. Solids
354
,
350
(
2008
).
51.
P. K.
Gupta
and
J. C.
Mauro
,
Phys. Rev. E
78
,
062501
(
2008
).
52.
A. P.
Sokolov
,
E.
Rössler
,
A.
Kisliuk
, and
D.
Quitmann
,
Phys. Rev. Lett.
71
,
2062
(
1993
).
53.
S.
Sastry
,
Nature
409
,
164
(
2001
).
54.
L.-M.
Martinez
and
C. A.
Angell
,
Nature
410
,
663
(
2001
).
55.
C. A.
Angell
,
Chem. Rev.
102
,
2627
(
2002
).
56.
T.
Scopigno
,
G.
Ruocco
,
F.
Sette
, and
G.
Monaco
,
Science
302
,
849
(
2003
).
57.
V. N.
Novikov
and
A. P.
Sokolov
,
Nature
431
,
961
(
2004
).
58.
J. C.
Dyre
,
Rev. Mod. Phys.
78
,
953
(
2006
).
59.
M. M.
Smedskjaer
,
J. C.
Mauro
, and
Y.
Yue
,
J. Chem. Phys.
131
,
244514
(
2009
).
60.
G. G.
Naumis
,
Phys. Rev. B
61
,
R9205(R)
(
2000
).
61.
M.
Micoulaut
,
J. Phys.: Condens. Matter
22
,
285101
(
2010
).
62.
M. M.
Smedskjaer
,
J. C.
Mauro
,
S.
Sen
, and
Y.
Yue
,
Chem. Mater.
22
,
5358
(
2010
).
63.
L.-M.
Wang
and
J. C.
Mauro
,
J. Chem. Phys.
134
,
044522
(
2011
).
64.
M.
Bauchy
and
M.
Micoulaut
,
Europhys. Lett.
104
,
56002
(
2013
).
65.
D. L.
Sidebottom
and
S. E.
Schnell
,
Phys. Rev. B
87
,
054202
(
2013
).
66.
J. C.
Mauro
and
R. J.
Loucks
,
Phys. Rev. E
78
,
021502
(
2008
).
67.
J. C.
Mauro
,
D. C.
Allan
, and
M.
Potuzak
,
Phys. Rev. B
80
,
094204
(
2009
).
68.
X.
Guo
,
M. M.
Smedskjaer
, and
J. C.
Mauro
,
J. Phys. Chem. B
120
,
3226
(
2016
).
69.
S.
Bhosle
,
K.
Gunasekera
,
P.
Boolchand
, and
M.
Micoulaut
,
Int. J. Appl. Glass Sci.
3
,
189
(
2012
).
70.
K.
Vignarooban
,
P.
Boolchand
,
R.
Kerner
, and
M.
Micoulaut
,
APS Meting Abstr.
55
,
2
(
2010
).
71.
J. C.
Mauro
,
P. K.
Gupta
, and
R. J.
Loucks
,
J. Chem. Phys.
130
,
234503
(
2009
).
You do not currently have access to this content.