Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim’s suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim’s ratio as well as the reduced boiling temperature (Guldberg’s ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

2.
C.
Vega
and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
13
,
19663
(
2011
).
3.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
4.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
5.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
6.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
7.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
8.
M. W.
Mahony
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
9.
S. W.
Rick
,
J. Chem. Phys.
120
,
6085
(
2004
).
10.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
,
J. Chem. Phys.
122
,
114507
(
2005
).
11.
R.
García Fernández
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
124
,
144506
(
2006
).
12.
C.
Vega
,
J. L. F.
Abascal
, and
I.
Nezbeda
,
J. Chem. Phys.
125
,
034503
(
2006
).
13.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
14.
G. C.
Boulougouris
,
I. G.
Economou
, and
D. N.
Theodorou
,
J. Phys. Chem. B
102
,
1029
(
1998
).
15.
H.
Jiang
,
O. A.
Moultos
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
120
,
12358
(
2016
).
16.
P. T.
Kiss
and
A.
Baranyai
,
J. Chem. Phys.
138
,
204507
(
2013
).
17.
F.
Moučka
and
I.
Nezbeda
,
J. Chem. Phys.
145
,
244501
(
2016
).
18.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
19.
E. M.
Blokhuis
,
D.
Bedeaux
,
C. D.
Holcomb
, and
J. A.
Zollweg
,
Mol. Phys.
85
,
665
(
1995
).
20.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
21.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
23.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
24.
P.
Orea
,
J.
López-Lemus
, and
J.
Alejandre
,
J. Chem. Phys.
123
,
114702
(
2005
).
25.
C. D.
Holcomb
,
P.
Clancy
, and
J. A.
Zollweg
,
Mol. Phys.
78
,
437
(
1993
).
26.
27.
A.
Trokhymchuk
and
J.
Alejandre
,
J. Chem. Phys.
111
,
8510
(
1999
).
28.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon
,
Oxford
,
1982
).
29.
F.
Kohler
,
Monatsh. Chem.
103
,
685
(
1972
).
30.
L. P. N.
Rebelo
,
J. N.
Canongia Lopes
,
J. M. S. S.
Esperança
, and
E.
Filipe
,
J. Phys. Chem. B
109
,
6040
(
2005
).
31.
C.
Vega
and
E.
de Miguel
,
J. Chem. Phys.
126
,
154707
(
2007
).
32.
V. C.
Weiss
,
B.
Heggen
, and
F.
Müller-Plathe
,
J. Phys. Chem. C
114
,
3599
(
2010
).
33.
F.
Leroy
and
V. C.
Weiss
,
J. Chem. Phys.
134
,
094703
(
2011
).
34.
V. C.
Weiss
and
F.
Leroy
,
J. Chem. Phys.
144
,
224501
(
2016
).
35.
V. C.
Weiss
,
J. Chem. Phys.
144
,
234502
(
2016
).
36.
F. J.
Blas
,
E.
Martín del Río
,
E.
de Miguel
, and
G.
Jackson
,
Mol. Phys.
99
,
1851
(
2001
).
37.
G. J.
Gloor
,
G.
Jackson
,
F. J.
Blas
,
E.
Martín del Río
, and
E.
de Miguel
,
J. Chem. Phys.
121
,
12740
(
2004
).
38.
V. C.
Weiss
,
J. Phys. Chem. B
114
,
9183
(
2010
).
39.
V. C.
Weiss
,
J. Chem. Phys.
143
,
144503
(
2015
).
40.
N. B.
Vergaftik
,
B. N.
Volkov
, and
L. D.
Voljak
,
J. Phys. Chem. Ref. Data
12
,
817
(
1983
).
41.
J.
Alejandre
and
G. A.
Chapela
,
J. Chem. Phys.
132
,
014701
(
2010
).
42.
H.
Hu
and
F.
Wang
,
J. Chem. Phys.
142
,
214507
(
2015
).
43.
W.
Wagner
and
A.
Pruß
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
44.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
102
,
7470
(
1998
).
45.
M.
Lísal
,
W. R.
Smith
, and
I.
Nezbeda
,
Fluid Phase Equilib.
181
,
127
(
2001
).
46.
M.
Lísal
,
J.
Kolafa
, and
I.
Nezbeda
,
J. Chem. Phys.
117
,
8892
(
2002
).
47.
M.
Lísal
,
I.
Nezbeda
, and
W. R.
Smith
,
J. Phys. Chem. B
108
,
7412
(
2004
).

Supplementary Material

You do not currently have access to this content.