The accurate calculation of intermolecular interactions is important to our understanding of properties in large molecular systems. The high computational cost of the current “gold standard” method, coupled cluster with singles and doubles and perturbative triples (CCSD(T), limits its application to small- to medium-sized systems. Second-order Møller–Plesset perturbation (MP2) theory is a cheaper alternative for larger systems, although at the expense of its decreased accuracy, especially when treating van der Waals complexes. In this study, a new modification of the spin-component scaled MP2 method was proposed for a wide range of intermolecular complexes including two well-known datasets, S22 and S66, and a large dataset of ionic liquids consisting of 174 single ion pairs, IL174. It was found that the spin ratio, ϵΔs=EINTOSEINTSS, calculated as the ratio of the opposite-spin component to the same-spin component of the interaction correlation energy fell in the range of 0.1 and 1.6, in contrast to the range of 3–4 usually observed for the ratio of absolute correlation energy, ϵs=EOSESS, in individual molecules. Scaled coefficients were found to become negative when the spin ratio fell in close proximity to 1.0, and therefore, the studied intermolecular complexes were divided into two groups: (1) complexes with ϵΔs< 1 and (2) complexes with ϵΔs 1. A separate set of coefficients was obtained for both groups. Exclusion of counterpoise correction during scaling was found to produce superior results due to decreased error. Among a series of Dunning’s basis sets, cc-pVTZ and cc-pVQZ were found to be the best performing ones, with a mean absolute error of 1.4 kJ mol−1 and maximum errors below 6.2 kJ mol−1. The new modification, spin-ratio scaled second-order Møller–Plesset perturbation, treats both dispersion-driven and hydrogen-bonded complexes equally well, thus validating its robustness with respect to the interaction type ranging from ionic to neutral species at minimal computational cost.

1.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
, “
Density functional theory of electronic structure
,”
J. Phys. Chem.
100
,
12974
12980
(
1996
).
2.
R. A.
Distasio
, Jr.
and
M.
Head-Gordon
, “
Optimized spin-component scaled second-order Møller-Plesset perturbation theory for intermolecular interaction energies
,”
Mol. Phys.
105
,
1073
1083
(
2007
).
3.
Y.
Huang
and
G. J. O.
Beran
, “
Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory
,”
J. Chem. Phys.
143
,
44113
(
2015
).
4.
S.
Grimme
, “
Accurate description of van der Waals complexes by density functional theory including empirical corrections
,”
J. Comput. Chem.
25
,
1463
1473
(
2004
).
5.
S.
Grimme
,
C.
Diedrich
, and
M.
Korth
, “
The importance of inter- and intramolecular van der Waals interactions in organic reactions: The dimerization of anthracene revisited
,”
Angew. Chem., Int. Ed.
45
,
625
629
(
2006
).
6.
S.
Grimme
, “
Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn–Sham density functional theory
,”
Angew. Chem., Int. Ed.
45
,
4460
4464
(
2006
).
7.
J.
Antony
and
S.
Grimme
, “
Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules
,”
Phys. Chem. Chem. Phys.
8
,
5287
5293
(
2006
).
8.
S.
Grimme
,
J.
Antony
,
T.
Schwabe
, and
C.
Mück-Lichtenfeld
, “
Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules
,”
Org. Biomol. Chem.
5
,
741
758
(
2007
).
9.
T.
Schwabe
and
S.
Grimme
, “
Double-hybrid density functionals with long-range dispersion corrections: Higher accuracy and extended applicability
,”
Phys. Chem. Chem. Phys.
9
,
3397
3406
(
2007
).
10.
O. A.
Vydrov
and
T.
Van Voorhis
, “
Nonlocal van der Waals density functional made simple
,”
Phys. Rev. Lett.
103
,
63004
(
2009
).
11.
O. A.
Vydrov
and
T. V.
Voorhis
, “
Nonlocal van der Waals density functional: The simpler the better
,”
J. Chem. Phys.
133
,
244103
(
2010
).
12.
S.
Grimme
, “
Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel and antiparallel-spin pair correlation energies
,”
J. Chem. Phys.
118
,
9095
9102
(
2003
).
13.
J.
Řezáč
and
P.
Hobza
, “
Benchmark calculations of interaction energies in noncovalent complexes and their applications
,”
Chem. Rev.
116
,
5038
5071
(
2016
).
14.
J. G.
Hill
,
J. A.
Platts
, and
H.-J.
Werner
, “
Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods
,”
Phys. Chem. Chem. Phys.
8
,
4072
4078
(
2006
).
15.
J. G.
Hill
and
J. A.
Platts
, “
Spin-component scaling methods for weak and stacking interactions
,”
J. Chem. Theory Comput.
3
,
80
85
(
2007
).
16.
J. G.
Hill
and
J. A.
Platts
, “
Calculating stacking interactions in nucleic acid base-pair steps using spin-component scaling and local second order Møller–Plesset perturbation theory
,”
Phys. Chem. Chem. Phys.
10
,
2785
2791
(
2008
).
17.
J.
Antony
and
S.
Grimme
, “
Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?
,”
J. Phys. Chem. A
111
,
4862
4868
(
2007
).
18.
M.
Pitoňák
,
P.
Neogrády
,
J.
Černý
,
S.
Grimme
, and
P.
Hobza
, “
Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data
,”
ChemPhysChem
10
,
282
289
(
2009
).
19.
R.
Sedlak
,
K. E.
Riley
,
J.
Řezáč
,
M.
Pitoňák
, and
P.
Hobza
, “
MP2.5 and MP2.X: Approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration
,”
ChemPhysChem
14
,
698
707
(
2013
).
20.
J.
Rigby
and
E. I.
Izgorodina
, “
New SCS- and SOS-MP2 coefficients fitted to semi-coulombic systems
,”
J. Chem. Theory Comput.
10
,
3111
3122
(
2014
).
21.
J.
Řezáč
,
Y.
Huang
,
P.
Hobza
, and
G. J. O.
Beran
, “
Benchmark calculations of three-body intermolecular interactions and the performance of low-cost electronic structure methods
,”
J. Chem. Theory Comput.
11
,
3065
3079
(
2015
).
22.
M. B.
Goldey
,
B.
Belzunces
, and
M.
Head-Gordon
, “
Attenuated MP2 with a long-range dispersion correction for treating nonbonded interactions
,”
J. Chem. Theory Comput.
11
,
4159
4168
(
2015
).
23.
T. P. M.
Goumans
,
A. W.
Ehlers
,
K.
Lammertsma
,
E.-U.
Würthwein
, and
S.
Grimme
, “
Improved reaction and activation energies of [4+2] cycloadditions, [3,3] sigmatropic rearrangements and electrocyclizations with the spin-component-scaled MP2 method
,”
Chem. – Eur. J.
10
,
6468
6475
(
2004
).
24.
S.
Grimme
, “
On the importance of electron correlation effects for the π-π interactions in cyclophanes
,”
Chem. – Eur. J.
10
,
3423
3429
(
2004
).
25.
I.
Hyla-Kryspin
and
S.
Grimme
, “
Comprehensive study of the thermochemistry of first-row transition metal compounds by spin component scaled MP2 and MP3 methods
,”
Organometallics
23
,
5581
5592
(
2004
).
26.
M.
Gerenkamp
and
S.
Grimme
, “
Spin-component scaled second-order Møller–Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies
,”
Chem. Phys. Lett.
392
,
229
235
(
2004
).
27.
S.
Grimme
, “
Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods
,”
J. Phys. Chem. A
109
,
3067
3077
(
2005
).
28.
M.
Piacenza
and
S.
Grimme
, “
Van der Waals interactions in aromatic systems: Structure and energetics of dimers and trimers of pyridine
,”
ChemPhysChem
6
,
1554
1558
(
2005
).
29.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Chem. Phys.
124
,
34108
(
2006
).
30.
S.
Grimme
 et al, “
Consistent theoretical description of 1,3-dipolar cycloaddition reactions
,”
J. Phys. Chem. A
110
,
2583
2586
(
2006
).
31.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method
,”
J. Chem. Phys.
121
,
9793
9802
(
2004
).
32.
Á.
Szabados
, “
Theoretical interpretation of Grimme’s spin-component-scaled second order Møller-Plesset theory
,”
J. Chem. Phys.
125
,
214105
(
2006
).
33.
R. F.
Fink
, “
Spin-component-scaled Møller–Plesset (SCS-MP) perturbation theory: A generalization of the MP approach with improved properties
,”
J. Chem. Phys.
133
,
174113
(
2010
).
34.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
, “
Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
,”
Phys. Chem. Chem. Phys.
8
,
1985
1993
(
2006
).
35.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
36.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
, “
Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations
,”
J. Chem. Phys.
118
,
8149
8160
(
2003
).
37.
T.
Takatani
and
C. D.
Sherrill
, “
Performance of spin-component-scaled Møller–Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions
,”
Phys. Chem. Chem. Phys.
9
,
6106
(
2007
).
38.
O.
Marchetti
and
H.-J.
Werner
, “
Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method
,”
J. Phys. Chem. A
113
,
11580
11585
(
2009
).
39.
A.
Heßelmann
, “
Improved supermolecular second order Møller–Plesset intermolecular interaction energies using time-dependent density functional response theory
,”
J. Chem. Phys.
128
,
144112
(
2008
).
40.
A.
Hesselmann
and
T.
Korona
, “
On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C60 fullerene with a rare gas atom
,”
Phys. Chem. Chem. Phys.
13
,
732
743
(
2010
).
41.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches
,”
J. Chem. Phys.
141
,
234111
(
2014
).
42.
J.
Rigby
,
S.
Barrera Acevedo
, and
E. I.
Izgorodina
, “
Novel SCS-IL-MP2 and SOS-IL-MP2 methods for accurate energetics of large-scale ionic liquid clusters
,”
J. Chem. Theory Comput.
11
,
3610
3616
(
2015
).
43.
E. I.
Izgorodina
 et al, “
Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids
,”
Phys. Chem. Chem. Phys.
16
,
7209
7221
(
2014
).
44.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
45.
B.
Efron
, “
Bootstrap methods: Another look at the jackknife
,”
Ann. Stat.
7
,
1
26
(
1979
).
46.
B.
Efron
, “
Better bootstrap confidence intervals
,”
J. Am. Stat. Assoc.
82
,
171
185
(
1987
).
47.
A.
Halkier
 et al, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
,
243
252
(
1998
).
48.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2014
).
49.
J. M.
Turney
 et al, “
Psi4: An open-source ab initio electronic structure program
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
556
565
(
2012
).
50.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
, “
Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set
,”
J. Chem. Theory Comput.
6
,
2365
2376
(
2010
).
51.
S. Y. S.
Tan
and
E. I.
Izgorodina
, “
Comparison of the effective fragment potential method with symmetry-adapted perturbation theory in the calculation of intermolecular energies for ionic liquids
,”
J. Chem. Theory Comput.
12
,
2553
2568
(
2016
).
52.
J. A.
Pople
, “
Two-dimensional chart of quantum chemistry
,”
J. Chem. Phys.
43
,
S229
S230
(
1965
).
53.
M.
Karplus
, “
Three-dimensional ‘Pople diagram’
,”
J. Phys. Chem.
94
,
5435
5436
(
1990
).

Supplementary Material

You do not currently have access to this content.