The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embedding contributions. In particular, these models can also be efficiently employed to replace the exact KED in meta-Generalized Gradient Approximation (meta-GGA) exchange-correlation functionals allowing to extend the subsystem DFT applicability to the meta-GGA level of theory. Here, we present a two-dimensional scan of semilocal KED models as linear functionals of the reduced gradient and of the reduced Laplacian, for atoms and weakly bound molecular systems. We find that several models can perform well but in any case the Laplacian contribution is extremely important to model the local features of the KED. Indeed a simple model constructed as the sum of Thomas-Fermi KED and 1/6 of the Laplacian of the density yields the best accuracy for atoms and weakly bound molecular systems. These KED models are tested within subsystem DFT with various meta-GGA exchange-correlation functionals for non-bonded systems, showing a good accuracy of the method.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
J. F.
Dobson
,
G.
Vignale
, and
M. P.
Das
,
Electronic Density Functional Theory
(
Springer
,
1998
).
3.
G. E.
Scuseria
and
V. N.
Staroverov
, in
Theory and Applications of Computational Chemistry: The First 40 Years
, A Volume of Technical and Historical Perspectives, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), pp.
669
724
.
4.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
5.
D. C.
Langreth
and
M. J.
Mehl
,
Phys. Rev. B
28
,
1809
(
1983
).
6.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
7.
A. V.
Arbuznikov
,
J. Struct. Chem.
48
,
S1
(
2007
).
8.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
9.
F.
Della Sala
,
E.
Fabiano
, and
L. A.
Constantin
,
Int. J. Quantum Chem.
116
,
1641
(
2016
).
10.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
,
Phys. Rev. Lett.
103
,
026403
(
2009
).
11.
L. A.
Constantin
,
L.
Chiodo
,
E.
Fabiano
,
I.
Bodrenko
, and
F.
Della Sala
,
Phys. Rev. B
84
,
045126
(
2011
).
12.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. B
86
,
035130
(
2012
).
13.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. B
88
,
125112
(
2013
).
14.
F.
Della Sala
,
E.
Fabiano
, and
L. A.
Constantin
,
Phys. Rev. B
91
,
035126
(
2015
).
15.
T.
Van Voorhis
and
G. E.
Scuseria
,
J. Chem. Phys.
109
,
400
(
1998
).
16.
H. L.
Schmider
and
A. D.
Becke
,
J. Chem. Phys.
109
,
8188
(
1998
).
17.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
18.
A.
Ruzsinszky
,
J.
Sun
,
B.
Xiao
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
8
,
2078
(
2012
).
19.
J.
Sun
,
B.
Xiao
, and
A.
Ruzsinszky
,
J. Chem. Phys.
137
,
051101
(
2012
).
20.
J.
Sun
,
R.
Haunschild
,
B.
Xiao
,
I. W.
Bulik
,
G. E.
Scuseria
, and
J. P.
Perdew
,
J. Chem. Phys.
138
,
044113
(
2013
).
21.
R.
Peverati
and
D. G.
Truhlar
,
J. Phys. Chem. Lett.
3
,
117
(
2012
).
22.
B.
Xiao
,
J.
Sun
,
A.
Ruzsinszky
,
J.
Feng
,
R.
Haunschild
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. B
88
,
184103
(
2013
).
23.
J.
Sun
,
B.
Xiao
,
Y.
Fang
,
R.
Haunschild
,
P.
Hao
,
A.
Ruzsinszky
,
G. I.
Csonka
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. Lett.
111
,
106401
(
2013
).
24.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
25.
C.
Adamo
,
M.
Ernzerhof
, and
G. E.
Scuseria
,
J. Chem. Phys.
112
,
2643
(
2000
).
26.
K. E.
Riley
,
B. T.
Op’t Holt
, and
K. M.
Merz
,
J. Chem. Theory Comput.
3
,
407
(
2007
).
27.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
28.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
 et al,
Nat. Chem.
8
,
831
(
2016
).
29.
H. S.
Yu
,
X.
He
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
12
,
1280
(
2016
).
30.
J.
Tao
and
Y.
Mo
,
Phys. Rev. Lett.
117
,
073001
(
2016
).
31.
J.
Wellendorff
,
K. T.
Lundgaard
,
K. W.
Jacobsen
, and
T.
Bligaard
,
J. Chem. Phys.
140
,
144107
(
2014
).
32.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
33.
L. A.
Constantin
,
E.
Fabiano
,
J.
Pitarke
, and
F.
Della Sala
,
Phys. Rev. B
93
,
115127
(
2016
).
34.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
35.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
381
,
495
(
2003
).
36.
F.
Zahariev
,
S. S.
Leang
, and
M. S.
Gordon
,
J. Chem. Phys.
138
,
244108
(
2013
).
37.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
38.
T. A.
Wesolowski
, in
Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol. 10, pp.
1
82
.
39.
C. R.
Jacob
and
J.
Neugebauer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
(
2014
).
40.
A.
Krishtal
,
D.
Sinha
,
A.
Genova
, and
M.
Pavanello
,
J. Phys. Condens. Matter
27
,
183202
(
2015
).
41.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
11635
(
2005
).
42.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
43.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
44.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
45.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
46.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
47.
L. A.
Constantin
,
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
Phys. Rev. Lett.
106
,
186406
(
2011
).
48.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
7
,
2439
(
2011
).
49.
S.
Laricchia
,
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Theory Comput.
10
,
164
(
2014
).
50.
F.
Tran
and
T. A.
Wesoowski
,
Int. J. Quantum Chem.
89
,
441
(
2002
).
51.
F.
Tran
and
T. A.
Wesolowski
, in
Recent Progress in Orbital-free Density Functional Theory
, edited by
T. A.
Wesolowsky
and
Y. A.
Wang
(
World Scientific
,
Singapore
,
2013
), pp.
429
442
.
52.
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
J. Chem. Phys.
140
,
114101
(
2014
).
53.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
Chem. Phys. Lett.
518
,
114
(
2011
).
54.
T. A.
Wesołowski
,
Phys. Rev. A
77
,
012504
(
2008
).
55.
T.
Dresselhaus
and
J.
Neugebauer
,
Theor. Chem. Acc.
134
,
1
(
2015
).
56.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
133
,
164111
(
2010
).
57.
S.
Śmiga
,
E.
Fabiano
,
S.
Laricchia
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Phys.
142
,
154121
(
2015
).
58.
P.
Ramos
,
M.
Papadakis
, and
M.
Pavanello
,
J. Phys. Chem. B
119
,
7541
(
2015
).
59.
L. H.
Thomas
,
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1926
).
61.
E.
Fermi
,
Rend. Accad. Naz. Lincei
6
,
602
(
1927
).
62.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
63.
C.
Ciracì
and
F.
Della Sala
,
Phys. Rev. B
93
,
205405
(
2016
).
64.
D. A.
Kirzhnitz
,
Field Theoretical Methods in Many-Body Systems
(
Pergamon Press
,
1967
).
65.
M.
Brack
,
B.
Jennings
, and
Y.
Chu
,
Phys. Lett. B
65
,
1
(
1976
).
67.
W.
Yang
,
R. G.
Parr
, and
C.
Lee
,
Phys. Rev. A
34
,
4586
(
1986
).
68.
D.
Lee
,
L. A.
Constantin
,
J. P.
Perdew
, and
K.
Burke
,
J. Chem. Phys.
130
,
034107
(
2009
).
69.
D.
Garcìa-Aldea
and
J. E.
Alvarellos
,
J. Chem. Phys.
127
,
144109
(
2007
).
70.
J. P.
Perdew
and
L. A.
Constantin
,
Phys. Rev. B
75
,
155109
(
2007
).
71.
V. V.
Karasiev
,
R. S.
Jones
,
S. B.
Trickey
, and
F. E.
Harris
,
Phys. Rev. B
80
,
245120
(
2009
).
72.
V. V.
Karasiev
,
D.
Chakraborty
,
O. A.
Shukruto
, and
S. B.
Trickey
,
Phys. Rev. B
88
,
161108
(
2013
).
73.
A. C.
Cancio
,
D.
Stewart
, and
A.
Kuna
,
J. Chem. Phys.
144
,
084107
(
2016
).
74.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
,
Phys. Rev. Lett.
108
,
253002
(
2012
).
75.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
76.
TURBOMOLE V6.2, 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
77.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
(
2014
).
78.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
79.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
80.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Theory Comput.
9
,
2256
(
2013
).
81.
J. M.
del Campo
,
J. L.
Gázquez
,
S.
Trickey
, and
A.
Vela
,
Chem. Phys. Lett.
543
,
179
(
2012
).
82.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
83.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
84.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
138
,
124112
(
2013
).
85.
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
10
,
3151
(
2014
).
86.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
137
,
014102
(
2012
).
87.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
88.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
89.
B.
Silvi
and
A.
Savin
,
Nature
371
,
683
(
1994
).
90.
V.
Tsirelson
and
A.
Stash
,
Chem. Phys. Lett.
351
,
142
(
2002
).
91.
A. A.
Astakhov
,
A. I.
Stash
, and
V. G.
Tsirelson
,
Int. J. Quantum Chem.
116
,
237
(
2016
).
92.
S.
Pittalis
,
F.
Troiani
,
C. A.
Rozzi
, and
G.
Vignale
,
Phys. Rev. B
91
,
075109
(
2015
).

Supplementary Material

You do not currently have access to this content.