A machine learning approach based on the artificial neural network (ANN) is applied for the configuration problem in solids. The proposed method provides a direct mapping from configuration vectors to energies. The benchmark conducted for the M1 phase of Mo–V–Te–Nb oxide showed that only a fraction of configurations needs to be calculated, thus the computational burden significantly decreased, by a factor of 20–50, with R2 = 0.96 and MAD = 0.12 eV. It is shown that ANN can also handle the effects of geometry relaxation when properly trained, resulting in R2 = 0.95 and MAD = 0.13 eV.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
P.
Ewald
,
Ann. Phys.
369
,
253
(
1921
).
4.
G.
Hautier
,
C. C.
Fischer
,
A.
Jain
,
T.
Mueller
, and
G.
Ceder
,
Chem. Mater.
22
,
3762
(
2010
).
5.
H.
Kim
and
Y.
Jung
,
Int. J. Quantum Chem.
115
,
1141
(
2015
).
6.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
 III
, and
W. M.
Skiff
,
J. Am. Chem. Soc.
114
,
10024
(
1992
).
7.
C. J.
Casewit
,
K. S.
Colwell
, and
A. K.
Rappé
,
J. Am. Chem. Soc.
114
,
10046
(
1992
).
8.
K.
Gundertofte
,
T.
Liljefors
,
P.
Norrby
, and
I.
Pettersson
,
J. Comput. Chem.
17
,
429
(
1996
).
9.
J. M.
Sanchez
,
F.
Ducastelle
, and
D.
Gratias
,
Physica A
128
,
334
(
1984
).
10.
D.
Fontaine
,
Solid State Phys.
47
,
33
(
1994
).
11.
J. W. D.
Connolly
and
A. R.
Williams
,
Phys. Rev. B
27
,
5169
(
1983
).
12.
D. B.
Laks
,
L. G.
Ferreira
,
S.
Froyen
, and
A.
Zunger
,
Phys. Rev. B
46
,
12587
(
1992
).
13.
N. A.
Zarkevich
and
D. D.
Johnson
,
Phys. Rev. Lett.
92
,
255702
(
2004
).
14.
A.
Seko
,
Y.
Koyama
, and
I.
Tanaka
,
Phys. Rev. B
80
,
165122
(
2009
).
15.
L. J.
Nelson
,
V.
Ozoliņš
,
C. S.
Reese
,
F.
Zhou
, and
G. L. W.
Hart
,
Phys. Rev. B
88
,
155105
(
2013
).
16.
C.
Wolverton
and
V.
Ozoliņš
,
Phys. Rev. Lett.
86
,
5518
(
2001
).
17.
A.
van de Walle
and
G.
Ceder
,
J. Phase Equilib.
23
,
348
(
2002
).
18.
B. C.
Han
,
A.
Van der Ven
,
G.
Ceder
, and
B.
Hwang
,
Phys. Rev. B
72
,
205409
(
2005
).
19.
V.
Blum
and
A.
Zunger
,
Phys. Rev. B
69
,
020103(R)
(
2004
).
20.
T.
Mueller
and
G.
Ceder
,
Phys. Rev. B
80
,
204103
(
2009
).
21.
W. S.
McCulloch
and
W.
Pitts
,
Bull. Math. Biophys.
5
,
115
(
1943
).
22.
F.
Rosenblatt
,
Psychol. Rev.
65
,
386
(
1958
).
23.
B. G.
Sumpter
,
C.
Getino
, and
D. W.
Noid
,
Annu. Rev. Phys. Chem.
45
,
439
(
1994
).
24.
G.
Cybenko
,
Math. Control Signals Syst.
2
,
303
(
1989
).
25.
K.
Funahashi
,
Neural Networks
2
,
183
(
1989
).
26.
V.
Maiorov
and
A.
Pinkus
,
Neurocomputing
25
,
81
(
1999
).
27.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
28.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
6
,
2326
(
2015
).
29.
J.
Hachmann
,
R.
Olivares-Amaya
,
S.
Atahan-Evrenk
,
C.
Amador-Bedolla
,
R. S.
Sánchez-Carrera
,
A.
Gold-Parker
,
L.
Vogt
,
A. M.
Brockway
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. Lett.
2
,
2241
(
2011
).
30.
J.
Wu
,
Y.
Zhou
, and
X.
Xu
,
Int. J. Quantum Chem.
115
,
1021
(
2015
).
31.
A.
Seko
,
T.
Maekawa
,
K.
Tsuda
, and
I.
Tanaka
,
Phys. Rev. B
89
,
054303
(
2014
).
32.
S.
Manzhos
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
125
,
084109
(
2006
).
33.
C. M.
Handley
and
P. L.
Popelier
,
J. Phys. Chem. A
114
,
3371
(
2010
).
34.
J.
Behler
,
Phys. Chem. Chem. Phys.
13
,
17930
(
2011
).
35.
L.
Yang
,
S.
Dacek
, and
G.
Ceder
,
Phys. Rev. B
90
,
054102
(
2014
).
36.
M.
Riedmiller
and
H.
Braun
, “
Rprop—A fast adaptive learning algorithm
,” in
Proceedings of ISCIS VII
, Technical Report (
Universitat
,
1992
).
37.
C.
Igel
and
M.
Hüsken
,
Neurocomputing
50
,
105
(
2003
).
38.
M.
Aouine
,
J. L.
Dubois
, and
J. M. M.
Millet
,
Chem. Commun.
2001
,
1180
.
39.
J. M. M.
Millet
,
H.
Roussel
,
A.
Pigamo
,
J. L.
Dubois
, and
J. C.
Jumas
,
Appl. Catal., A
232
,
77
(
2002
).
40.
P.
DeSanto
,
D. J.
Buttrey
,
R. K.
Grasseli
,
C. G.
Lugmair
,
A. F.
Volpe
,
B. H.
Toby
, and
T.
Vogt
,
Z. Kristallogr. - Cryst. Mater.
219
,
152
(
2004
).
41.
H.
Murayama
,
D.
Vitry
,
W.
Ueda
,
G.
Fuchs
,
M.
Anne
, and
J. L.
Dubois
,
Appl. Catal., A
317
,
137
(
2007
).
42.
X.
Li
,
D. J.
Buttrey
,
D. A.
Blom
, and
T.
Vogt
,
Top. Catal.
54
,
614
(
2011
).
43.
W. A.
Goddard
 III
,
J. E.
Mueller
,
K.
Chenoweth
, and
A. C. T.
van Duin
,
Catal. Today
157
,
71
(
2010
).
44.
G.
Fu
,
X.
Xu
, and
P.
Sautet
,
Angew. Chem., Int. Ed.
51
,
12854
(
2012
).
45.
A.
Togo
, Spglib, https://atztogo.github.io/spglib/,
2009
.
46.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
47.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
65
,
11169
(
1996
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
50.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
51.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
52.
G.
Buesing
, Neural Networks (in ruby).
53.
S.
Geman
,
E.
Bienenstock
, and
R.
Doursat
,
Neural Comput.
4
,
1
(
1992
).
54.
G.
Huang
,
IEEE Trans. Neural Networks
14
,
274
(
2003
).

Supplementary Material

You do not currently have access to this content.