Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an “abbreviated cycle” still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

1.
T.
Suntola
and
J.
Antson
, “
Method for producing compound thin films
,” U.S. patent 4058430 (15 November
1977
).
2.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
3.
D. J. H.
Emslie
,
P.
Chadha
, and
J. S.
Price
,
Coord. Chem. Rev.
257
,
3282
(
2013
).
4.
T. J.
Knisley
,
L. C.
Kalataruge
, and
C. H.
Winter
,
Coord. Chem. Rev.
257
,
3222
3231
(
2013
).
5.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
6.
S. D.
Elliott
and
J. C.
Greer
,
J. Mater. Chem.
14
,
3246
(
2004
).
7.
M.
Shirazi
and
S. D.
Elliott
,
Nanoscale
7
,
6311
6318
(
2015
).
8.
A.
Zydor
,
V. G.
Kessler
, and
S. D.
Elliott
,
Phys. Chem. Chem. Phys.
14
,
7954
7964
(
2012
).
10.
K.
Knapas
and
M.
Ritala
,
Chem. Mater.
23
,
2766
(
2011
).
11.
A. B.
Papandrew
,
C. R. I.
Chisholm
,
R. A.
Elgammal
,
M. M.
Özer
, and
S. K.
Zecevic
,
Chem. Mater.
23
,
1659
(
2011
).
12.
J.
Hämäläinen
,
F.
Munnik
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
20
,
6840
(
2008
).
13.
J.
Hämäläinen
,
E.
Puukilainen
,
M.
Kemell
,
L.
Costelle
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
21
,
4868
(
2009
).
14.
L.
Wu
and
E.
Eisenbraun
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
25
,
2581
(
2007
).
15.
X.
Hu
,
J.
Schuster
,
S. E.
Schulz
, and
T.
Gessner
,
Phys. Chem. Chem. Phys.
17
,
26892
(
2015
).
16.
M.
Utriainen
,
M.
Kröger-Laukkanen
,
L. S.
Johansson
, and
L.
Niinistö
,
Appl. Surf. Sci.
157
,
151
(
2000
).
17.
Q.
Ma
and
F.
Zaera
,
J. Vac. Sci. Technol., A
31
,
01A112
(
2013
).
18.
X.
Hu
,
J.
Schuster
,
S. E.
Schulz
, and
T.
Gessner
,
Microelectron. Eng.
137
,
23
(
2015
).
19.
E.
Machado
,
M.
Kaczmarski
,
P.
Ordejón
,
D.
Garg
,
J.
Norman
, and
H.
Cheng
,
Langmuir
21
,
7608
(
2005
).
20.
Y.
Maimaiti
and
S. D.
Elliott
,
J. Phys. Chem. C
119
,
9375
(
2015
).
21.
F.
Zaera
,
Coord. Chem. Rev.
257
,
3177
(
2013
).
22.
G.
Dey
and
S. D.
Elliott
,
J. Phys. Chem. C
119
,
5914
(
2015
).
23.
Q. M.
Phung
,
G.
Pourtois
,
J.
Swerts
,
K.
Pierloot
, and
A.
Delabie
,
J. Phys. Chem. C
119
,
6592
(
2015
).
24.
J.
Kwon
,
M.
Saly
,
M. D.
Halls
,
R. K.
Kanjolia
, and
Y. J.
Chabal
,
Chem. Mater.
24
,
1025
(
2012
).
25.
Y.
Maimaiti
,
M.
Nolan
, and
S. D.
Elliott
,
Phys. Chem. Chem. Phys.
16
,
3036
(
2014
).
26.
F.
Zaera
,
Coord. Chem. Rev.
257
,
3177
(
2013
).
27.
M. M.
Minjauw
,
J.
Dendooven
,
B.
Capon
,
M.
Schaekers
, and
C.
Detavernier
,
J. Mater. Chem. C
3
,
4848
(
2015
).
28.
P.
Mårtensson
,
K.
Larsson
, and
J.-O.
Carlsson
,
Appl. Surf. Sci.
157
,
92
(
2000
).
29.
P.
Martensson
and
J.-O.
Carlsson
,
J. Electrochem. Soc.
145
,
2926
2931
(
1998
).
30.
I. K.
Igumenov
,
P. P.
Semyannikov
,
S. V.
Trubin
,
N. B.
Morozova
,
N. V.
Gelfond
,
A. V.
Mischenkoa
, and
J. A.
Norman
,
Surf. Coat. Technol.
201
,
9003
9008
(
2007
).
31.
T. J.
Knisley
,
T. C.
Ariyasena
,
T.
Sajavaara
,
M. J.
Saly
, and
C. H.
Winter
,
Chem. Mater.
23
,
4417
(
2011
).
32.
G.
Dey
and
S. D.
Elliott
,
RSC Adv.
4
,
34448
(
2014
).
33.
J. W.
Klaus
,
S. J.
Ferro
, and
S. M.
George
,
Thin Solid Films
360
,
145
(
2000
).
34.
S.
Klejna
and
S. D.
Elliott
,
J. Phys. Chem. C
116
,
643
654
(
2012
).
35.
B.
Vidjayacoumar
,
D. J. H.
Emslie
,
S. B.
Clendenning
,
J. M.
Blackwell
,
J. F.
Britten
, and
A.
Rheingold
,
Chem. Mater.
22
,
4844
4853
(
2010
).
36.
B. H.
Lee
,
J. K.
Hwang
,
J. W.
Nam
,
S. U.
Lee
,
J. T.
Kim
,
S.-M.
Koo
,
A.
Baunemann
,
R. A.
Fischer
, and
M. M.
Sung
,
Angew. Chem., Int. Ed.
48
,
4536
4539
(
2009
).
37.
G.
Dey
and
S. D.
Elliott
,
J. Phys. Chem. A
116
,
8893
(
2012
).
38.
G.
Dey
and
S. D.
Elliott
,
J. Phys. Chem. C
119
,
5914
(
2015
).
39.
Y.
Maimaiti
and
S. D.
Elliott
,
Chem. Mater.
28
,
6282
6295
(
2016
).
40.
G.
Dey
,
J. S.
Wrench
,
D. J.
Hagen
,
L.
Keeney
, and
S. D.
Elliott
,
Dalton Trans.
44
,
10188
(
2015
).
41.
V.
Pore
,
K.
Knapas
,
T.
Hatanpaa
,
T.
Sarnet
,
M.
Kemell
,
M.
Ritala
,
M.
Leskela
, and
K.
Mizohata
,
Chem. Mater.
23
,
247
254
(
2011
).
42.
C. T.
Sirimanne
,
M. M.
Kerrigan
,
P. D.
Martin
,
R. K.
Kanjolia
,
S. D.
Elliott
, and
C. H.
Winter
,
Inorg. Chem.
54
,
7
9
(
2015
).
43.
G.
Dey
and
S.
Elliott
,
Theor. Chem. Acc.
133
,
1416
(
2013
).
44.
T.
Aaltonen
,
P.
Alén
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Vap. Deposition
9
,
45
(
2003
).
45.
T.
Aaltonen
,
M.
Ritala
,
T.
Sajavaara
,
J.
Keinonen
, and
M.
Leskelä
,
Chem. Mater.
15
,
1924
(
2003
).
46.
K.
Knapas
and
M.
Ritala
,
Chem. Mater.
20
,
5698
(
2008
).
47.
W. M. M.
Kessels
,
H. C. M.
Knoops
,
S. A. F.
Dielissen
,
A. J. F.
Mackus
, and
M. C. M.
van de Sanden
,
Appl. Phys. Lett.
95
,
013114
(
2009
).
48.
49.
C. K.
Ande
,
S. D.
Elliott
, and
W. M. M.
Kessels
,
J. Phys. Chem. C
118
,
26683
26694
(
2014
).
50.
Q.
Ma
,
H.
Guo
,
R. G.
Gordon
, and
F.
Zaera
,
Chem. Mater.
23
,
3325
(
2011
).
51.
M. B. E.
Griffiths
,
P. J.
Pallister
,
D. J.
Mandia
, and
S. T.
Barry
,
Chem. Mater.
28
,
44
(
2016
).
52.
S.-H.
Kim
,
ECS Trans.
41
,
19
23
(
2011
).
53.
T. J.
Knisley
,
M. J.
Saly
,
M. J.
Heeg
,
J. L.
Roberts
, and
C. H.
Winter
,
Organometallics
30
,
5010
(
2011
).
54.
L.-M.
Clement
and
J.
Lee
, “
Titanium bis diazadienyl precursor for vapor deposition of titanium oxide films
,” U.S. patent 20150072085 A1 (12 March
2015
).
55.
A. Z.
Bradley
J. S.
Thompson
, and
K.-H.
Park
, “
Copper (ii) complexes for deposition of copper films by atomic layer deposition
,” U.S. patent 20080044687 A1 (21 February
2008
).
56.
J. P.
Klesko
,
M. M.
Kerrigan
, and
C. H.
Winter
,
Chem. Mater.
28
,
700
703
(
2016
).
57.
M.
Kerrigan
and
C. H.
Winter
,
16th International Conference on Atomic Layer Deposition
,
Ireland
,
2016
.
58.
T.
Pugh
 et al.,
Inorg. Chem.
52
,
13719
(
2013
).
59.
N.
Kaltsoyannis
,
J. Chem. Soc., Dalton Trans.
1996
,
1583
.

Supplementary Material

You do not currently have access to this content.