Grand canonical Monte Carlo (GCMC) simulation is used to study the adsorption of pure SO2 using a functionalized bilayer graphene nanoribbon (GNR) at 303 K. The functional groups considered in this work are OH, COOH, NH2, NO2, and CH3. The mole percent of functionalization considered in this work is in the range of 3.125%–6.25%. GCMC simulation is further used to study the selective adsorption of SO2 from binary and ternary mixtures of SO2, CO2, and N2, of variable composition using the functionalized bilayer graphene nanoribbon at 303 K. This study shows that the adsorption and selectivity of SO2 increase after the functionalization of the nanoribbon compared to the hydrogen terminated nanoribbon. The order of adsorption capacity and selectivity of the functionalized nanoribbon is found to follow the order COOH > NO2 > NH2 > CH3 > OH > H. The selectivity of SO2 is found to be maximum at a pressure less than 0.2 bar. Furthermore, SO2 selectivity and adsorption capacity decrease with increase in the molar ratio of SO2/N2 mixture from 1:1 to 1:9. In the case of ternary mixture of SO2, CO2, N2, having compositions of 0.05, 0.15, 0.8, the selectivity of SO2 over N2 is higher than that of CO2 over N2. The maximum selectivity of SO2 over CO2 is observed for the COOH functionalized GNR followed by NO2 and other functionalized GNRs.

1.
Z.
Zhang
,
Z.-Z.
Yao
,
S.
Xiang
, and
B.
Chen
,
Energy Environ. Sci.
7
,
2868
(
2014
).
2.
M.
Rahimi
,
J. K.
Singh
,
D. J.
Babu
,
J. J.
Schneider
, and
F.
Mller-Plathe
,
J. Phys. Chem. C
117
,
13492
(
2013
).
3.
A.
Sayari
,
Y.
Belmabkhout
, and
R.
Serna-Guerrero
,
Chem. Eng. J.
171
,
760
(
2011
).
4.
B. G.
Miller
,
Fossil Fuel Emissions Control Technologies: Stationary Heat and Power Systems
(
Butterworth-Heinemann
,
2015
).
5.
B.
He
,
X.
Zheng
,
Y.
Wen
,
H.
Tong
,
M.
Chen
, and
C.
Chen
,
Energy Convers. Manage.
44
,
2175
(
2003
).
6.
A. M.
Strömberg
and
H. T.
Karlsson
,
Chem. Eng. Sci.
43
,
2095
(
1988
).
7.
M. H. H.
van Dam
,
A. S.
Lamine
,
D.
Roizard
,
P.
Lochon
, and
C.
Roizard
,
Ind. Eng. Chem. Res.
36
,
4628
(
1997
).
8.
R.
Deng
,
L.
Jia
,
Q.
Song
,
S.
Su
, and
Z.
Tian
,
J. Hazard. Mater.
229
,
398
(
2012
).
9.
C.
Chen
,
Z.-G.
Tang
,
C.-C.
Zhou
,
Ind. Eng. Chem. Res.
43
,
6714
(
2004
).
10.
J.
Boniface
,
Q.
Shi
,
Y.
Li
,
J.
Cheung
,
O.
Rattigan
,
P.
Davidovits
,
D.
Worsnop
,
J.
Jayne
, and
C.
Kolb
,
J. Phys. Chem. A
104
,
7502
(
2000
).
11.
C.
Wang
,
G.
Cui
,
X.
Luo
,
Y.
Xu
,
H.
Li
, and
S.
Dai
,
J. Am. Chem. Soc.
133
,
11916
(
2011
).
12.
D.
Yang
,
M.
Hou
,
H.
Ning
,
J.
Ma
,
X.
Kang
,
J.
Zhang
, and
B.
Han
,
ChemSusChem
6
,
1191
(
2013
).
13.
J.
Guo
and
A. C.
Lua
,
J. Colloid Interface Sci.
251
,
242
(
2002
).
14.
B.
Grzyb
,
A.
Albiniak
,
E.
Broniek
,
G.
Furdin
,
J.
March
, and
D.
Bgin
,
Microporous Mesoporous Mater.
118
,
163
(
2009
).
15.
W.
Wang
,
X.
Peng
, and
D.
Cao
,
Environ. Sci. Technol.
45
,
4832
(
2011
).
16.
M.
Rahimi
,
D. J.
Babu
,
J. K.
Singh
,
Y.-B.
Yang
,
J. J.
Schneider
, and
F.
Müller-Plathe
,
J. Chem. Phys.
143
,
169901
(
2015
).
17.
A.
Srinivasan
and
M. W.
Grutzeck
,
Environ. Sci. Technol.
33
,
1464
(
1999
).
18.
E.
Ivanova
and
B.
Koumanova
,
J. Hazard. Mater.
167
,
306
(
2009
).
19.
X.
Wang
,
X.
Ma
,
S.
Zhao
,
B.
Wang
, and
C.
Song
,
Energy Environ. Sci.
2
,
878
(
2009
).
20.
L.
Xu
,
J.
Guo
,
F.
Jin
, and
H.
Zeng
,
Chemosphere
62
,
823
(
2006
).
21.
I.
Mochida
,
Y.
Korai
,
M.
Shirahama
,
S.
Kawano
,
T.
Hada
,
Y.
Seo
,
M.
Yoshikawa
, and
A.
Yasutake
,
Carbon
38
,
227
(
2000
).
22.
C. A.
Fernandez
,
P. K.
Thallapally
,
R. K.
Motkuri
,
S. K.
Nune
,
J. C.
Sumrak
,
J.
Tian
, and
J.
Liu
,
Cryst. Growth Des.
10
,
1037
(
2010
).
23.
S.
Yang
,
J.
Sun
,
A. J.
Ramirez-Cuesta
,
S. K.
Callear
,
W. I.
David
,
D. P.
Anderson
,
R.
Newby
,
A. J.
Blake
,
J. E.
Parker
,
C. C.
Tang
 et al.,
Nat. Chem.
4
,
887
(
2012
).
24.
F.
Marsh
and
H.
Rodriguez-Reinoso
,
Activated Carbon
(
Elsevier Science
,
Oxford
,
2006
).
25.
H.
Deng
,
C. J.
Doonan
,
H.
Furukawa
,
R. B.
Ferreira
,
J.
Towne
,
C. B.
Knobler
,
B.
Wang
, and
O. M.
Yaghi
,
Science
327
,
846
(
2010
).
26.
P. B.
Malla
and
S.
Komarneni
,
J. Porous Mater.
1
,
55
(
1995
).
27.
V. S.
Kandagal
,
A.
Pathak
,
K.
Ayappa
, and
S. N.
Punnathanam
,
J. Phys. Chem. C
116
,
23394
(
2012
).
28.
P.
Halder
,
M.
Maurya
,
S. K.
Jain
, and
J. K.
Singh
,
Phys. Chem. Chem. Phys.
18
,
14007
(
2016
).
29.
J.
Kong
,
M. G.
Chapline
,
H.
Dai
 et al.,
Adv. Mater.
13
,
1384
(
2001
).
30.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Crigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
31.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E. W.
Hill
,
P.
Blake
,
M. I.
Katsnelson
, and
K. S.
Novoselov
,
Nat. Mater.
6
,
1476
(
2007
).
32.
T.
Wehling
,
K.
Novoselov
,
S.
Morozov
,
E.
Vdovin
,
M.
Katsnelson
,
A.
Geim
, and
A.
Lichtenstein
,
Nano Lett.
8
,
173
(
2008
).
33.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
,
Phys. Rev. B
77
,
125416
(
2008
).
34.
B.
Huang
,
Z.
Li
,
Z.
Liu
,
G.
Zhou
,
S.
Hao
,
J.
Wu
,
B.-L.
Gu
, and
W.
Duan
,
J. Phys. Chem. C
112
,
13442
(
2008
).
35.
Y.
Houndonougbo
, “
Molecular simulation of carbon capture in a series of isoreticular zeolitic imidazolate materials
,” in
ACS Symposium Series
(
American Chemical Society
,
2013
), pp.
83
98
.
36.
J.-S.
Bae
and
S. K.
Bhatia
,
Energy Fuels
20
,
2599
(
2006
).
37.
P.
Kowalczyk
,
H.
Tanaka
,
K.
Kaneko
,
A. P.
Terzyk
, and
D. D.
Do
,
Langmuir
21
,
5639
(
2005
).
38.
A.
Kumar
,
R. F.
Lobo
, and
N. J.
Wagner
,
AIChE J.
57
,
1496
(
2011
).
39.
X.
Peng
,
D.
Cao
, and
J.
Zhao
,
Sep. Purif. Technol.
68
,
50
(
2009
).
40.
G. K.
Dimitrakakis
,
E.
Tylianakis
, and
G. E.
Froudakis
,
Nano Lett.
8
,
3166
(
2008
).
41.
T. A.
Makal
,
J.-R.
Li
,
W.
Lu
, and
H.-C.
Zhou
,
Chem. Soc. Rev.
41
,
7761
(
2012
).
42.
A.
Gotzias
,
H.
Heiberg-Andersen
,
M.
Kainourgiakis
, and
T.
Steriotis
,
Carbon
49
,
2715
(
2011
).
43.
A.
Sharma
,
S.
Namsani
, and
J. K.
Singh
,
Mol. Simul.
41
,
414
(
2015
).
44.
M. H.
Ketko
,
G.
Kamath
, and
J. J.
Potoff
,
J. Phys. Chem. B
115
,
4949
(
2011
).
45.
J. J.
Potoff
and
J. I.
Siepmann
,
AIChE J.
47
,
1676
(
2001
).
46.
T.
Dasgupta
,
S. N.
Punnathanam
, and
K.
Ayappa
,
Chem. Eng. Sci.
121
,
279
(
2015
).
47.
G.
Maitland
,
M.
Rigby
,
E.
Smith
, and
W.
Wakeham
,
Intermolecular Forces: Their Origin and Determination
(
Oxford University Press
,
1981
).
48.
E.
Mostaani
,
N. D.
Drummond
, and
V. I.
Fal’ko
,
Phys. Rev. Lett.
115
,
115501
(
2015
).
49.
P.
Ungerer
,
B.
Tavitian
, and
A.
Boutin
,
Applications of Molecular Simulation in the Oil and Gas Industry: Monte-Carlo Methods
(
Editions TECHNIP
,
2005
).
50.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic Press
,
2002
).
51.
E.
Lemmon
,
M.
McLinden
, and
D.
Friend
, NIST Chemistry Webbook, NIST Standard Reference Database No. 69,
NIST
,
2005
.
52.
S. J.
Mahdizadeh
and
S. F.
Tayyari
,
Theor. Chem. Acc.
128
,
231
(
2011
).
53.
D. D.
Do
and
H. D.
Do
,
J. Phys. Chem. B
110
,
17531
(
2006
).
54.
A. L.
Myers
and
P. A.
Monson
,
Langmuir
18
,
10261
(
2002
).
55.
T.
Vuong
,, and
P. A.
Monson
,
Langmuir
12
,
5425
(
1996
).
56.
D.
Nicholson
,
Computer Simulation and the Statistical Mechanics of Adsorption
(
Academic Press
,
1982
).
57.
D. J.
Babu
,
F. G.
Kuhl
,
S.
Yadav
,
D.
Markert
,
M.
Bruns
,
M. J.
Hampe
, and
J. J.
Schneider
,
RSC Adv.
6
,
36834
(
2016
).
58.
M.
Molina-Sabio
,
A.
Muecas
,
F.
Rodrguez-Reinoso
, and
B.
McEnaney
,
Carbon
33
,
1777
(
1995
).
59.
Y.-H.
Zhang
,
Y.-B.
Chen
,
K.-G.
Zhou
,
C.-H.
Liu
,
J.
Zeng
,
H.-L.
Zhang
, and
Y.
Peng
,
Nanotechnology
20
,
185504
(
2009
).
60.
A.
Ahlam
,
G. H.
Ismail
,
A. M.
Babeer
 et al.,
J. Surf. Eng. Mater. Adv. Technol.
3
,
287
(
2013
).
61.
X.
Zhou
,
W.
Huang
,
J.
Miao
,
Q.
Xia
,
Z.
Zhang
,
H.
Wang
, and
Z.
Li
,
Chem. Eng. J.
266
,
339
(
2015
).
62.
Z.
Zhang
,
S.
Huang
,
S.
Xian
,
H.
Xi
, and
Z.
Li
,
Energy Fuels
25
,
835
(
2011
).
63.
J. A.
Campbell
,
J. Chem. Educ.
62
,
231
(
1985
).
64.
K.
Foo
and
B.
Hameed
,
Chem. Eng. J.
156
,
2
(
2010
).
65.
R. D.
Johnson
, “
Computational chemistry comparison and benchmark database release 17b standard reference
,” Database number- 101,
2015
.
66.
M.
Rahimi
,
J. K.
Singh
, and
F.
Müller-Plathe
,
Phys. Chem. Chem. Phys.
18
,
4112
(
2016
).

Supplementary Material

You do not currently have access to this content.