A novel method was developed to enhance canonical sampling. A system is divided into virtually introduced sub-states, called “virtual states,” which does not exist in reality. The configuration sampling is achieved by a standard canonical sampling method, the Metropolis Monte Carlo method, and confined in a virtual state for a while. In contrast, inter-virtual state motions are controlled by transition probabilities, which can be set arbitrarily. A simple recursive equation was introduced to determine the inter-virtual state transition probabilities, by which the sampling is enhanced considerably. We named this method “virtual-system coupled canonical Monte Carlo (VcMC) sampling.” A simple method was proposed to reconstruct a canonical distribution function at a certain temperature from the resultant VcMC sampling data. Two systems, a one-dimensional double-well potential and a three-dimensional ligand-receptor binding/unbinding model, were examined. VcMC produced an accurate canonical distribution much more quickly than a conventional canonical Monte Carlo simulation does.

1.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
(
2001
).
2.
J.
Higo
,
J.
Ikebe
,
N.
Kamiya
, and
H.
Nakamura
,
Biophys. Rev.
4
,
27
(
2012
).
3.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
12
(
1992
).
4.
J.
Lee
,
Phys. Rev. Lett.
71
,
211
(
1993
).
5.
K.
Hukushima
and
K.
Nemoto
,
J. Phys. Soc. Jpn.
65
,
1604
(
1996
).
6.
R. H.
Swendsen
and
J. S.
Wang
,
Phys. Rev. Lett.
57
,
2607
(
1986
).
7.
U. H. E.
Hansmann
and
Y.
Okamoto
,
J. Comput. Chem.
14
,
1333
(
1993
).
8.
A.
Kidera
,
Proc. Natl. Acad. Sci. U. S. A.
92
,
9886
(
1995
).
9.
U. H. E.
Hansmann
,
Y.
Okamoto
, and
F.
Eisenmenger
,
Chem. Phys. Lett.
259
,
321
(
1996
).
10.
Y.
Iba
,
G.
Chikenji
, and
M.
Kikuchi
,
J. Phys. Soc. Jpn.
67
,
3327
(
1998
).
11.
N.
Nakajima
,
H.
Nakamura
, and
A.
Kidera
,
J. Phys. Chem. B
101
,
817
(
1997
).
12.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
13.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
14.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
15.
E.
Darve
and
A.
Pohorille
,
J. Chem. Phys.
115
,
9169
(
2001
).
16.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
17.
R.
Martoŭák
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
75503
(
2003
).
18.
J. G.
Kim
,
Y.
Fukunishi
,
A.
Kidera
, and
H.
Nakamura
,
Phys. Rev. E
70
,
057103
(
2004
).
19.
J.
Kim
,
J. E.
Straub
, and
T.
Keyes
,
Phys. Rev. Lett.
97
,
050601
(
2006
).
20.
T.
Nagasima
,
A. R.
Kinjo
,
T.
Mitsui
, and
K.
Nishikawa
,
Phys. Rev. E
75
,
066706
(
2007
).
21.
N.
Hori
,
G.
Chikenji
,
R.
Berry
, and
S.
Takada
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
73
(
2009
).
22.
J.
Higo
,
Y.
Nishimura
, and
H.
Nakamura
,
J. Am. Chem. Soc.
133
,
10448
(
2011
).
23.
J.
Ikebe
,
S.
Sakuraba
, and
H.
Kono
,
J. Comput. Chem.
35
,
39
(
2014
).
24.
J.
Higo
,
B.
Dasgupta
,
T.
Mashimo
,
K.
Kasahara
,
Y.
Fukunishi
, and
H.
Nakamura
,
J. Comput. Chem.
36
,
1489
(
2015
).
25.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
26.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
27.
M.
Souaille
and
B.
Roux
,
Comput. Phys. Commun.
135
,
40
(
1995
).
28.
W.
Wojtas-Niziurski
,
Y.
Meng
,
B.
Roux
, and
S.
Bernèche
,
J. Chem. Theory Comput.
9
,
1885
1895
(
2013
).
29.
U. M.
Bohner
and
J.
Kästner
, “
An algorithm to find minimum free-energy paths using umbrella integration
,”
J. Chem. Phys.
137
,
034105
(
2012
).
30.
J.
Kästner
, “
Umbrella integration with higher-order correction terms
,”
J. Chem. Phys.
136
,
234102
(
2012
).
31.
W.
Jiang
,
Y.
Luo
,
L.
Maragliano
, and
B.
Roux
,
J. Chem. Theory Comput.
8
,
4672
(
2012
).
32.
G. H.
Paine
and
H. A.
Scheraga
,
Biopolymers
24
,
1391
(
1985
).
33.
M.
Mezei
,
J. Comput. Phys.
68
,
237
(
1987
).
34.
R. W. W.
Hooft
,
B. P.
van Eijck
, and
J.
Kroon
,
J. Chem. Phys.
97
,
6690
(
1992
).
35.
C.
Bartels
and
M.
Karplus
,
J. Comput. Chem.
18
,
1450
(
1997
).
36.
V.
Babin
,
V.
Karpusenka
,
M.
Moradi
,
C.
Roland
, and
C.
Sagui
,
Int. J. Quantum Chem.
109
,
3666
(
2009
).
37.
J.
Higo
,
K.
Umezawa
, and
H.
Nakamura
,
J. Chem. Phys.
138
,
184106
(
2013
).
38.
B.
Dasgupta
,
H.
Nakamura
, and
J.
Higo
,
Chem. Phys. Lett.
662
,
327
(
2016
).
39.
S.
Iida
,
H.
Nakamura
, and
J.
Higo
,
Biochem. J.
473
,
1651
(
2016
).
40.
I.
Fukuda
and
H.
Nakamura
,
J. Phys. Chem. B
108
,
4162
(
2004
).
41.
J.
Higo
,
N.
Kamiya
,
T.
Sugihara
,
Y.
Yonezawa
, and
H.
Nakamura
,
Chem. Phys. Lett.
473
,
326
(
2009
).
42.
J.
Ikebe
,
K.
Umezawa
,
N.
Kamiya
,
T.
Sugihara
,
Y.
Yonezawa
,
Y.
Takano
,
H.
Nakamura
, and
J.
Higo
,
J. Comput. Chem.
32
,
1286
(
2011
).
You do not currently have access to this content.