The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surrounding medium for which a large number of theoretical descriptions have been used in the past. An accurate description of these reactions requires knowing the potential energy surface and the friction felt by the reactants. Most of these theories start from the Langevin equation to derive the dynamics, but there are few examples comparing it with experiments. Here we explore the applicability of a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction. To this end, we have performed broadband fluorescence measurements with sub-picosecond time resolution of a covalently linked organic electron donor-acceptor system in solvents of changing viscosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction, we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES, which is assumed to be solute independent. A simpler and computationally faster approach uses the Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic potentials. Both approaches reproduce the measurements in most of the solvents reasonably well. At long times, some differences arise from the errors inherited from the analysis of the stationary solvatochromism and at short times from the excess excitation energy. However, whenever the dynamics become slow, the GSE shows larger deviations than the GLE, the results of which always agree qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties. The method applied here can be used to predict the dynamics of any other reacting system, given the FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simulations, within the applicability limits found for the model in this work.

1.
S.
Arrhenius
,
Z. Phys. Chem.
4
,
226
(
1889
).
2.
E.
Wigner
,
Z. Phys. Chem., Abt. B
19
,
203
(
1932
).
3.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
4.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
5.
K. J.
Laidler
,
Chemical Kinetics
(
Pearson Education
,
1987
).
6.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
USA
,
2006
).
7.
E.
Pollak
,
J. Chem. Phys.
85
,
865
(
1986
);
V. I.
Mel’nikov
and
S. V.
Meshkov
,
J. Chem. Phys.
85
,
1018
(
1986
);
E.
Pollak
,
H.
Grabert
, and
P.
Hänggi
,
J. Chem. Phys.
91
,
4073
(
1989
).
8.
E.
Pollak
and
P.
Talkner
,
Chaos
15
,
026116
(
2005
).
9.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
10.
G.
van der Zwan
and
J. T.
Hynes
,
J. Chem. Phys.
78
,
4174
(
1983
).
11.
E.
Pollak
,
Chem. Phys. Lett.
127
,
178
(
1986
).
12.
S.
Kawai
and
T.
Komatsuzaki
,
Phys. Chem. Chem. Phys.
13
,
21217
(
2011
).
13.
L. D.
Zusman
,
Chem. Phys.
49
,
295
(
1980
).
14.
A. V.
Barzykin
,
P. A.
Frantsuzov
,
K.
Seki
, and
M.
Tachiya
,
Adv. Chem. Phys.
123
,
511
(
2002
).
15.
H.
Sumi
and
R. A.
Marcus
,
J. Chem. Phys.
84
,
4894
(
1986
).
16.
S.
Thallmair
,
M.
Kowalewski
,
J. P. P.
Zauleck
,
M. K.
Roos
, and
R.
de Vivie-Riedle
,
J. Phys. Chem. Lett.
5
,
3480
(
2014
).
17.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
(
1980
).
18.
E.
Gudowska-Nowak
,
Acta Phys. Pol., B
26
,
1449
(
1995
).
19.
V.
Karunakaran
,
M.
Pfaffe
,
I.
Ioffe
,
T.
Senyushkina
,
S. A.
Kovalenko
,
R.
Mahrwald
,
V.
Fartzdinov
,
H.
Sklenar
, and
N. P.
Ernsting
,
J. Phys. Chem. A
112
,
4294
(
2008
); Refs. 28 and 38–43 therein.
20.
S.
Okuyama
and
D. W.
Oxtoby
,
J. Chem. Phys.
84
,
5824
(
1986
).
21.
K.
Tominaga
,
G. C.
Walker
,
T. J.
Kang
,
P. F.
Barbara
, and
T.
Fonseca
,
J. Phys. Chem.
95
,
10485
(
1991
).
22.
K.
Tominaga
,
G. C.
Walker
,
W.
Jarzeba
, and
P. F.
Barbara
,
J. Phys. Chem.
95
,
10475
(
1991
).
23.
M. J.
van der Meer
,
H.
Zhang
, and
M.
Glasbeek
,
J. Chem. Phys.
112
,
2878
(
2000
);
M.
Glasbeek
and
H.
Zhang
,
Chem. Rev.
104
,
1929
(
2004
);
[PubMed]
I. A.
Heisler
,
M.
Kondo
, and
S. R.
Meech
,
J. Phys. Chem. B
113
,
1623
(
2009
);
[PubMed]
M.
Kondo
,
I. A.
Heisler
,
J.
Conyard
,
J. P. H.
Rivett
, and
S. R.
Meech
,
J. Phys. Chem. B
113
,
1632
(
2009
);
[PubMed]
Y.
Erez
,
Y.-H.
Liu
,
N.
Amdursky
, and
D.
Huppert
,
J. Phys. Chem. A
115
,
8479
(
2011
);
[PubMed]
R.
Simkovitch
,
R.
Gepshtein
, and
D.
Huppert
,
J. Phys. Chem. A
119
,
1797
(
2015
).
[PubMed]
24.
B. B.
Smith
,
H. J.
Kim
,
D.
Borgis
, and
J. T.
Hynes
, in
Dynamics and Mechanisms of Photoinduced Electron Transfer and Related Phenomena
, 29th ed., edited by
N.
Mataga
,
T.
Okada
, and
H.
Masuhara
(
North-Holland
,
Amsterdam, New York
,
1992
), pp.
39
56
.
25.
D. A.
Cherepanov
,
L. I.
Krishtalik
, and
A. Y.
Mulkidjanian
,
Biophys. J.
80
,
1033
(
2001
).
26.
W.
Min
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Phys. Rev. Lett.
94
,
198302
(
2005
).
27.
T. J.
Kang
,
W.
Jarzeba
,
P. F.
Barbara
, and
T.
Fonseca
,
Chem. Phys.
149
,
81
(
1990
).
28.

The division by the mass of the second and third terms on the rhs of Eq. (1) is implicit in the definitions of the friction and the noise, respectively.

29.
J. T.
Hynes
,
J. Phys. Chem.
90
,
3701
(
1986
).
30.
P.
Debye
,
Polar Molecules
(
Dover Publications, Inc.
,
1929
).
31.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
32.
M.
Sajadi
,
T.
Obernhuber
,
S. A.
Kovalenko
,
M.
Mosquera
,
B.
Dick
, and
N. P.
Ernsting
,
J. Phys. Chem. A
113
,
44
(
2009
).
33.
N.
Banerji
,
G.
Angulo
,
I.
Barabanov
, and
E.
Vauthey
,
J. Phys. Chem. A
112
,
9665
(
2008
).
34.
R.
Schanz
,
S. A.
Kovalenko
,
V.
Kharlanov
, and
N. P.
Ernsting
,
Appl. Phys. Lett.
79
,
566
(
2001
);
X.-X.
Zhang
,
C.
Würth
,
L.
Zhao
,
U.
Resch-Genger
,
N. P.
Ernsting
, and
M.
Sajadi
,
Rev. Sci. Instrum.
82
,
063108
(
2011
);
[PubMed]
M.
Sajadi
,
M.
Quick
, and
N. P.
Ernsting
,
Appl. Phys. Lett.
103
,
173514
(
2013
);
M.
Gerecke
,
G.
Bierhance
,
M.
Gutmann
,
N. P.
Ernsting
, and
A.
Rosspeintner
,
Rev. Sci. Instrum.
87
,
053115
(
2016
).
[PubMed]
35.
M.
Maroncelli
and
G. R.
Fleming
,
J. Chem. Phys.
86
,
6221
(
1987
).
36.
W.
Liptay
,
Z. Naturforsch., A: Phys. Sci.
20a
,
1441
(
1965
).
37.
A.
Rosspeintner
,
G.
Angulo
,
C.
Onitsch
,
M.
Kivala
,
F.
Diederich
,
G.
Grampp
, and
G.
Gescheidt
,
ChemPhysChem
11
,
1700
(
2010
).
38.
M.
Maroncelli
,
J. Mol. Liq.
57
,
1
(
1993
).
39.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
40.
A.
Rosspeintner
, “
Experimental observations of diffusional effects on photoinduced electron transfer reactions
,” Ph.D. thesis,
Graz University of Technology
,
Graz
,
2008
.
41.
G.
Angulo
,
M.
Brucka
,
M.
Gerecke
,
G.
Grampp
,
D.
Jeannerat
,
J.
Milkiewicz
,
Y.
Mitrev
,
C.
Radzewicz
,
A.
Rosspeintner
,
E.
Vauthey
, and
P.
Wnuk
,
Phys. Chem. Chem. Phys.
18
,
18460
(
2016
).
42.
J. A.
Gardecki
and
M.
Maroncelli
,
Appl. Spectrosc.
52
,
1179
(
1998
).
43.
M.
Kubista
,
R.
Sjöback
,
S.
Eriksson
, and
B.
Albinsson
,
Analyst
119
,
417
(
1994
).
44.
J.
Lewis
and
M.
Maroncelli
,
Chem. Phys. Lett.
282
,
197
(
1998
).
45.
J. B.
Birks
,
Photophysics of Aromatic Molecules
(
Wiley-Interscience
,
1970
).
46.
A.
Rosspeintner
,
G.
Angulo
, and
E.
Vauthey
,
J. Am. Chem. Soc.
136
,
2026
(
2014
).
47.
B.
Lang
,
S.
Mosquera-Vázquez
,
D.
Lovy
,
P.
Sherin
,
V.
Markovic
, and
E.
Vauthey
,
Rev. Sci. Instrum.
84
,
073107
(
2013
).
48.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
49.
V.
Barone
and
M.
Cossi
,
J. Phys. Chem. A
102
,
1995
(
1998
).
50.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2003
).
51.
Photoelectric Spectrometry Group England Staff
,
UV Atlas of Organic Compounds: UV Atlas Organischer Verbindungen
(
Springer US
,
Boston, MA
,
1967
).
52.

Usually defined as the energy difference between the lowest energy absorption maximum and the emission maximum.

53.
A.
Spanos
,
Probability Theory and Statistical Inference: Econometric Modeling with Observational Data
(
Cambridge University Press
,
Cambridge, UK, New York, NY, USA
,
1999
).
54.
O.
Braem
,
T. J.
Penfold
,
A.
Cannizzo
, and
M.
Chergui
,
Phys. Chem. Chem. Phys.
14
,
3513
(
2012
).
55.

Here we do not account for broadening due to electronic dephasing.

56.
J. A.
Riddick
,
W. B.
Bunger
, and
T. K.
Sakano
,
Organic Solvents. Physical Properties and Methods of Purification
, Techniques of Chemistry (
Wiley
,
1986
).
57.
Y.
Marcus
,
The Properties of Solvents, Wiley Series in Solution Chemistry
(
John Wiley & Sons Ltd.
,
1998
).
58.
T.
Kasajima
,
S.
Akimoto
,
S.-I.
Sato
, and
I.
Yamazaki
,
J. Phys. Chem. A
108
,
3268
(
2004
).
59.

We also tested the log-normal function as the underlying distribution for convolution with the lineshape function but did not obtain significantly improved fits. Thus we opted for the distribution with less degrees of freedom, i.e., the Gaussian distribution.

60.
T.
Kumpulainen
,
A.
Rosspeintner
, and
E.
Vauthey
,
Phys. Chem. Chem. Phys.
19
,
8815
(
2017
).
61.
D. R.
Kattnig
,
A.
Rosspeintner
, and
G.
Grampp
,
Phys. Chem. Chem. Phys.
13
,
3446
(
2011
).
62.

For the Hamiltonian, Eq. (13), the reason for the gl elements to be zero is that the influence of these off-diagonal elements on the finally obtained values is minimal. This is most likely because of the large energy difference between these two states. For the dipole moment matrix, Eq. (14), the off-diagonal elements connecting the states l and c are considered to be zero because we have no observable providing us with information about them. If these elements would be much larger than zero, a transient absorption band should be observable, shifting from the midIR to the NIR as time increases.

63.
G.
Van der Zwan
and
J. T.
Hynes
,
J. Phys. Chem.
89
,
4181
(
1985
).
64.

This is of course tantamount to tacitly assuming that the energetic stabilization due to dispersion interactions is the same for both excited states.

65.
K.
Dahl
,
R.
Biswas
,
N.
Ito
, and
M.
Maroncelli
,
J. Phys. Chem. B
109
,
1563
(
2005
).
66.

See page 1456 in Ref. 36 for a discussion on the validity of this assumption.

67.
S.
Arzhantsev
,
K. A.
Zachariasse
, and
M.
Maroncelli
,
J. Phys. Chem. A
110
,
3454
(
2006
).
68.
J. T.
Edward
,
J. Chem. Educ.
47
,
261
(
1970
).
69.

The protic solvents (30-34) were not used for the solvatochromic fitting.

70.
C.
Joblin
,
F.
Salama
, and
L.
Allamandola
,
J. Chem. Phys.
110
,
7287
(
1999
).
71.

To the best of our knowledge, even in the case of the harmonic oscillator, the relationship between these two quantities is only defined via Laplace transforms.

72.
T.
Gustavsson
,
L.
Cassara
,
V.
Gulbinas
,
G.
Gurzadyan
,
J.-C.
Mialocq
,
S.
Pommeret
,
M.
Sorgius
, and
P.
van der Meulen
,
J. Phys. Chem. A
102
,
4229
(
1998
).
73.
M.
Sajadi
and
N. P.
Ernsting
,
J. Phys. Chem. B
117
,
7675
(
2013
).
74.
H.
Stehfest
,
Commun. ACM
13
,
47
(
1970
).
75.
The MathWorks, Inc.
, MATLAB Release 2013a,
The MathWorks, Inc.
,
Natick, Massachusetts, USA
,
2013
.
76.
T.
Fonseca
,
Chem. Phys. Lett.
91
,
2869
(
1989
).
77.
E.
Gudowska-Nowak
,
Acta Phys. Pol., B
25
,
1161
(
1994
).
78.
I.
Goychuk
,
Adv. Chem. Phys.
150
,
187
253
(
2012
).
79.
A.
Córdoba
,
T.
Indei
, and
J. D.
Schieber
,
J. Rheol.
56
,
185
(
2012
).
80.
A. D.
Baczewski
and
S. D.
Bond
,
J. Chem. Phys.
139
,
044107
(
2013
).
81.
R.
Mannella
,
Int. J. Mod. Phys. C
13
,
1177
(
2002
).
82.

For PeDMA we have used the shift of the first moment, m1, while for C153 we used the peak maximum of the log-normal function, ν̃p.

83.

Only at the highest content of glycerol, there is a coincidence in C(t) (see Figs. S7 and S8), a case in which the dynamics of C153 are affected by the H-bonding (see Sec. V B 2 and Ref. 87).

84.

See Fig. 4 in Ref. 41.

85.
T.
Molotsky
and
D.
Huppert
,
J. Phys. Chem. A
107
,
2769
(
2003
).
86.
A.
Rosspeintner
,
G.
Angulo
,
M.
Weiglhofer
,
S.
Landgraf
, and
G.
Grampp
,
J. Photochem. Photobiol., A
183
,
225
(
2006
).
87.
M.
Sajadi
,
M.
Weinberger
,
H.-A.
Wagenknecht
, and
N. P.
Ernsting
,
Phys. Chem. Chem. Phys.
13
,
17768
(
2011
).
88.
D. W.
Small
,
D. V.
Matyushov
, and
G. A.
Voth
,
J. Am. Chem. Soc.
125
,
7470
(
2003
).
89.
D. V.
Matyushov
and
M. D.
Newton
,
J. Phys. Chem. A
121
,
2232
(
2017
).
90.
J. P.
Malhado
,
R.
Spezia
, and
J. T.
Hynes
,
J. Phys. Chem. A
115
,
3720
(
2011
).
91.
C. A.
Schwerdtfeger
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
140
,
034113
(
2014
).
92.
V. V.
Yudanov
,
V. A.
Mikhailova
, and
A. I.
Ivanov
,
Russ. J. Phys. Chem. B
7
,
187
(
2013
).

Supplementary Material

You do not currently have access to this content.