The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17–120 eV. The lowest four states of the pyridine radical cation, namely, 2A2(1a21), 2A1(7a11), 2B1(2b11), and 2B2(5b21), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)−1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.

1.
P.
Kiuru
and
J.
Yli-Kauhaluoma
, in
Heterocycles in Natural Product Synthesis
, edited by
K.
Majumdar
and
S. K.
Chattopadhyay
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2011
), p.
267
.
2.
M.
Baumann
and
I. R.
Baxendale
,
Beilstein J. Org. Chem.
9
,
2265
(
2013
).
3.
L. S.
Cederbaum
and
W.
Domcke
,
Adv. Chem. Phys.
36
,
205
(
1977
).
4.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
5.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
).
6.
J.
Schirmer
and
G.
Angonoa
,
J. Chem. Phys.
91
,
1754
(
1989
).
7.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
8.
H.-G.
Weikert
,
H.-D.
Meyer
,
L. S.
Cederbaum
, and
F.
Tarantelli
,
J. Chem. Phys.
104
,
7122
(
1996
).
9.
J.
Schirmer
,
A. B.
Trofimov
, and
G.
Stelter
,
J. Chem. Phys.
109
,
4734
(
1998
).
10.
A. B.
Trofimov
and
J.
Schirmer
,
J. Chem. Phys.
123
,
144115
(
2005
).
11.
M.
Schneider
,
D. Yu.
Soshnikov
,
D. M. P.
Holland
,
I.
Powis
,
E.
Antonsson
,
M.
Patanen
,
C.
Nicolas
,
C.
Miron
,
M.
Wormit
,
A.
Dreuw
, and
A. B.
Trofimov
,
J. Chem. Phys.
143
,
144103
(
2015
).
12.
D. M. P.
Holland
,
I.
Powis
,
A. B.
Trofimov
,
I. L.
Bodzuk
,
D. Yu.
Soshnikov
,
A. W.
Potts
, and
L.
Karlsson
,
Chem. Phys.
448
,
61
(
2015
);
A. W.
Potts
,
D. M. P.
Holland
,
I.
Powis
,
L.
Karlsson
,
A. B.
Trofimov
, and
I. L.
Badsyuk
,
Chem. Phys.
415
,
84
(
2013
);
I.
Powis
,
A. B.
Trofimov
,
I. L.
Badsyuk
,
D. M. P.
Holland
,
A. W.
Potts
, and
L.
Karlsson
,
Chem. Phys.
415
,
291
(
2013
).
13.
F.
Morini
,
B.
Hajgató
, and
M. S.
Deleuze
,
J. Phys. Chem. A
114
,
9374
(
2010
).
14.
J. V.
Ortiz
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszcynski
(
World Scientific
,
Singapore
,
1997
), Vol. 2, p.
1
.
15.
J. V.
Ortiz
,
J. Chem. Phys.
108
,
1008
(
1998
).
16.
V. G.
Zakrzewski
and
W.
von Niessen
,
J. Comput. Chem.
14
,
13
(
1993
);
V. G.
Zakrzewski
and
J. V.
Ortiz
,
Int. J. Quantum Chem.
53
,
583
(
1995
);
V. G.
Zakrzewski
and
J. V.
Ortiz
,
Int. J. Quantum Chem. Suppl.
28
,
23
(
1994
).
17.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
18.
A. M.
Ferreira
,
G.
Seabra
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, in
Understanding Chemical Reactivity: Quantum-Mechanical Prediction of Thermochemical Data
, edited by
J.
Cioslowski
(
Springer
,
The Netherlands
,
2001
), Vol. 22, p.
131
.
19.
H.
Sekino
and
R. J.
Bartlett
,
Int. J. Quantum Chem. Suppl.
18
,
255
(
1984
);
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
);
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
);
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).
R. J.
Bartlett
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
126
(
2012
).
21.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem. Suppl.
26
,
55
(
1992
);
F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
);
M.
Musial
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
118
,
1128
(
2003
);
P. U.
Manohar
,
J. F.
Stanton
, and
A. I.
Krylov
,
J. Chem. Phys.
131
,
114112
(
2009
).
[PubMed]
22.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
);
M.
Nooijen
and
J. G.
Snijders
,
J. Chem. Phys.
102
,
1681
(
1995
);
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
J. Chem. Theory Comput.
9
,
4313
(
2013
);
[PubMed]
K. B.
Bravaya
,
E.
Epifanovsky
, and
A. I.
Krylov
,
J. Phys. Chem. Lett.
3
,
2726
(
2012
).
[PubMed]
23.
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
47
,
569
(
1977
);
M.
Ehara
,
Y.
Ohtsuka
,
H.
Nakatsuji
,
M.
Takahashi
, and
Y.
Udagawa
,
J. Chem. Phys.
122
,
234319
(
2005
);
[PubMed]
M.
Ehara
,
J. R.
Gour
, and
P.
Piecuch
,
Mol. Phys.
107
,
871
(
2009
).
24.
K. K.
Innes
,
I. G.
Ross
, and
W. R.
Moomaw
,
J. Mol. Spectrosc.
132
,
492
(
1988
).
25.
A. D.
Baker
and
D. W.
Turner
,
Philos. Trans. R. Soc., A
268
,
131
(
1970
).
26.
R.
Gleiter
,
E.
Heilbronner
, and
V.
Hornung
,
Helv. Chim. Acta
55
,
255
(
1972
).
27.
G. H.
King
,
J. N.
Murrell
, and
R. J.
Suffolk
,
J. Chem. Soc., Dalton Trans.
1972
,
564
.
28.
C. R.
Brundle
,
M. B.
Robin
, and
N. A.
Kuebler
,
J. Am. Chem. Soc.
94
,
1466
(
1972
).
29.
C.
Utsunomiya
,
T.
Kobayashi
, and
S.
Nagakura
,
Bull. Chem. Soc. Jpn.
51
,
3482
(
1978
).
30.
I.
Reineck
,
R.
Maripuu
,
H.
Veenhuizen
,
L.
Karlsson
,
K.
Siegbahn
,
M. S.
Powar
,
W. N.
Zu
,
J. M.
Rong
, and
S. H.
Al-Shamma
,
J. Electron Spectrosc. Relat. Phenom.
27
,
15
(
1982
).
31.
M. N.
Piancastelli
,
P. R.
Keller
,
J. W.
Taylor
,
F. A.
Grimm
, and
T. A.
Carlson
,
J. Am. Chem. Soc.
105
,
4235
(
1983
).
32.
J. O.
Berg
,
D. H.
Parker
, and
M. A.
El-Sayed
,
Chem. Phys. Lett.
56
,
411
(
1978
).
33.
N.
Kishimoto
and
K.
Ohno
,
J. Phys. Chem. A
104
,
6940
(
2000
).
34.
S.-Y.
Liu
,
K.
Alnama
,
J.
Matsumoto
,
K.
Nishizawa
,
H.
Kohguchi
,
Y.-P.
Lee
, and
T.
Suzuki
,
J. Phys. Chem. A
115
,
2953
(
2011
).
35.
M. S.
Moghaddam
,
A. D. O.
Bawagan
,
K. H.
Tan
, and
W.
von Niessen
,
Chem. Phys.
207
,
19
(
1996
).
36.
M. A.
Śmiałek
,
M. A.
MacDonald
,
S.
Ptasińska
,
L.
Zuin
, and
N. J.
Mason
,
Eur. Phys. J. D
70
,
42
(
2016
).
37.
M.
Tsubouchi
and
T.
Suzuki
,
J. Phys. Chem. A
107
,
10897
(
2003
).
38.
M.
Riese
,
Z.
Altug
, and
J.
Grotemeyer
,
Phys. Chem. Chem. Phys.
8
,
4441
(
2006
).
39.
Y. R.
Lee
,
D. W.
Kang
,
H. L.
Kim
, and
C. H.
Kwon
,
J. Chem. Phys.
141
,
174303
(
2014
).
40.
I. C.
Walker
,
M. H.
Palmer
, and
A.
Hopkirk
,
Chem. Phys.
141
,
365
(
1989
).
41.
Y.-I.
Suzuki
and
T.
Suzuki
,
J. Phys. Chem. A
112
,
402
(
2008
).
42.
J.
Wan
,
M.
Hada
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
114
,
5117
(
2001
).
43.
O.
Kitao
and
H.
Nakatsuji
,
J. Chem. Phys.
88
,
4913
(
1988
).
44.
O.
Plashkevych
,
H.
Ågren
,
L.
Karlsson
, and
L. G. M.
Pettersson
,
J. Electron Spectrosc. Relat. Phenom.
106
,
51
(
2000
).
45.
L.
Yang
,
H.
Ågren
, and
V.
Carravetta
,
J. Electron Spectrosc. Relat. Phenom.
87
,
141
(
1997
).
46.
J.
Lorentzon
,
M. P.
Fülscher
, and
B. O.
Roos
,
Theor. Chim. Acta
92
,
67
(
1995
).
47.
W.
von Niessen
,
W. P.
Kraemer
, and
G. H. F.
Diercksen
,
Chem. Phys.
41
,
113
(
1979
).
48.
W.
von Niessen
,
G. H. F.
Diercksen
, and
L. S.
Cederbaum
,
Chem. Phys.
10
,
345
(
1975
).
49.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Phys. Chem. A
113
,
14630
(
2009
).
50.
A. B.
Trofimov
,
J.
Schirmer
,
V. B.
Kobychev
,
A. W.
Potts
,
D. M. P.
Holland
, and
L.
Karlsson
,
J. Phys. B: At., Mol. Opt. Phys.
39
,
305
(
2006
).
51.
K. B.
Bravaya
,
O.
Kostko
,
S.
Dolgikh
,
A.
Landau
,
M.
Ahmed
, and
A. I.
Krylov
,
J. Phys. Chem. A
114
,
12305
(
2010
).
52.
A. W.
Potts
,
D. M. P.
Holland
,
A. B.
Trofimov
,
J.
Schirmer
,
L.
Karlsson
, and
K.
Siegbahn
,
J. Phys. B: At., Mol. Opt. Phys.
36
,
3129
(
2003
).
53.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Phys. Chem. A
106
,
8411
(
2002
).
54.
D. M. P.
Holland
,
A. W.
Potts
,
L.
Karlsson
,
I. L.
Zaytseva
,
A. B.
Trofimov
, and
J.
Schirmer
,
Chem. Phys.
352
,
205
(
2008
).
55.
D. M. P.
Holland
,
A. W.
Potts
,
L.
Karlsson
,
I. L.
Zaytseva
,
A. B.
Trofimov
, and
J.
Schirmer
,
Chem. Phys.
353
,
47
(
2008
).
56.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Int. J. Quantum Chem.
80
,
831
(
2000
).
57.
I. L.
Zaytseva
,
A. B.
Trofimov
,
J.
Schirmer
,
O.
Plekan
,
V.
Feyer
,
R.
Richter
,
M.
Coreno
, and
K. C.
Prince
,
J. Phys. Chem. A
113
,
15142
(
2009
).
58.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Am. Chem. Soc.
122
,
12304
(
2000
).
59.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
60.
A. A.
Abrikosov
,
L. P.
Gorkov
, and
I. E.
Dzyaloshinski
,
Methods of Quantum Field Theory in Statistical Physics
(
Prentice–Hall
,
Englewood Cliffs
,
1963
).
61.
A. B.
Trofimov
,
J.
Schirmer
,
D. M. P.
Holland
,
L.
Karlsson
,
R.
Maripuu
,
K.
Siegbahn
, and
A. W.
Potts
,
Chem. Phys.
263
,
167
(
2001
);
A. W.
Potts
,
A. B.
Trofimov
,
J.
Schirmer
,
D. M. P.
Holland
, and
L.
Karlsson
,
Chem. Phys.
271
,
337
(
2001
).
62.
I.
Powis
,
I. L.
Zaytseva
,
A. B.
Trofimov
,
J.
Schirmer
,
D. M. P.
Holland
,
A. W.
Potts
, and
L.
Karlsson
,
J. Phys. B: At., Mol. Opt. Phys.
40
,
2019
(
2007
).
63.
J.
Schirmer
and
F.
Mertins
,
Int. J. Quantum Chem.
58
,
329
(
1996
).
64.
J.
Lindeberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
, 2nd ed. (
Wiley-Interscience
,
New Jersey
,
2004
).
65.
J. V.
Ortiz
,
Adv. Quantum Chem.
35
,
33
(
1999
).
66.
J.
Schirmer
,
M.
Braunstein
,
M.-T.
Lee
, and
V.
McKoy
, in
VUV and Soft X-Ray Photoionization
, edited by
U.
Becker
and
D. A.
Shirley
(
Plenum Press
,
New York
,
2001
), p.
105
.
67.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
127
,
234106
(
2007
);
[PubMed]
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
131
,
124114
(
2009
).
[PubMed]
68.
F.
Morini
,
B.
Hajgató
,
M. S.
Deleuze
,
C. G.
Ning
, and
J. K.
Deng
,
J. Phys. Chem. A
112
,
9083
(
2008
);
[PubMed]
M. S.
Deleuze
and
S.
Knippenberg
,
J. Chem. Phys.
125
,
104309
(
2006
);
[PubMed]
S.
Knippenberg
,
K. L.
Nixon
,
H.
Mackenzie-Ross
,
M. J.
Brunger
,
F.
Wang
,
M. S.
Deleuze
,
J.-P.
François
, and
D. A.
Winkler
,
J. Phys. Chem. A
109
,
9324
(
2005
).
[PubMed]
69.
Y. R.
Huang
,
S.
Knippenberg
,
B.
Hajgató
,
J.-P.
François
,
J. K.
Deng
, and
M. S.
Deleuze
,
J. Phys. Chem. A
111
,
5879
(
2007
).
70.
I. G.
Kaplan
,
B.
Barbiellini
, and
A.
Bansil
,
Phys. Rev. B
68
,
235104
(
2003
).
71.
E.
Weigold
and
I. E.
McCarthy
,
Electron Momentum Spectroscopy
(
Kluwer Dordrecht/Plenum
,
New York
,
1999
).
72.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
73.
G.
Born
,
H. A.
Kurtz
, and
Y.
Öhrn
,
J. Chem. Phys.
68
,
74
(
1978
).
74.
The ADC(3) code originally written by
G.
Angonoa
,
O.
Walter
, and
J.
Schirmer
; Further developed by
M. K.
Scheller
and
A. B.
Trofimov
.
75.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
);
M. S.
Gordon
and
M. W.
Schmidt
, in
Advances in Electronic Structure Theory: GAMESS a Decade Later
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), p.
1167
.
76.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6769
(
1992
).
77.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2010
.
78.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
79.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
80.
J. K.
Min
,
E. C.
Lee
,
H. M.
Lee
,
D. Y.
Kim
,
D.
Kim
, and
K. S.
Kim
,
Comput. Chem.
29
,
1208
(
2008
).
81.
Y.
Shao
 et al.,
Mol. Phys.
113
,
184
(
2015
).
82.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
111
,
8785
(
1999
).
83.
CFOUR, Coupled cluster techniques for Computational Chemistry, a quantum-chemical program package by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
, and
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, for the current version, see http://www.cfour.de.
84.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
);
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
);
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
85.
R.
Dennington
,
T.
Keith
, and
J.
Millam
, GaussView, Version 5
Semichem, Inc.
,
Shawnee Mission, KS
,
2009
.
86.
G.
Schaftenaar
and
J. H.
Noordik
, “
Molden: A pre- and post-processing program for molecular and electronic structures
,”
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
87.
D. M. P.
Holland
,
I.
Powis
,
G.
Öhrwall
,
L.
Karlsson
, and
W.
von Niessen
,
Chem. Phys.
326
,
535
(
2006
).
88.
Y.
Hikosaka
,
J. H. D.
Eland
,
T. M.
Watson
, and
I.
Powis
,
J. Chem. Phys.
115
,
4593
(
2001
).
89.
D. M. P.
Holland
,
Phys. Scr.
36
,
22
(
1987
).
90.
P.
Finetti
,
D. M. P.
Holland
,
C. J.
Latimer
,
C.
Binns
,
F. M.
Quinn
,
M.A.
Bowler
,
A. F.
Grant
, and
C. S.
Mythen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
184
,
627
(
2001
).
91.
D. M. P.
Holland
,
M. A.
Mac Donald
,
M. A.
Hayes
,
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
,
B.
Wannberg
, and
W.
von Niessen
,
Chem. Phys.
188
,
317
(
1994
).
92.
S. H.
Southworth
,
A. C.
Parr
,
J. E.
Hardis
,
J. L.
Dehmer
, and
D. M. P.
Holland
,
Nucl. Instrum. Methods Phys. Res., Sect. A
246
,
782
(
1986
).
93.
S.
Tixier
,
G.
Cooper
,
R.
Feng
, and
C. E.
Brion
,
J. Electron Spectrosc. Relat. Phenom.
123
,
185
(
2002
).
94.
L.-C.
Wang
and
R. J.
Boyd
,
J. Chem. Phys.
90
,
1083
(
1989
);
R. J.
Boyd
and
L.-C.
Wang
,
J. Comput. Chem.
10
,
367
(
1989
).
95.
G. J. M.
Veldem
and
D.
Feil
,
J. Phys. Chem.
96
,
10725
(
1992
).
96.
W.
Pyckhout
,
N.
Horemans
,
C.
van Alsenoy
,
H. J.
Geise
, and
D. W. H.
Rankin
,
J. Mol. Struct.
156
,
315
(
1987
).
97.
D. P.
DiLella
and
H. D.
Stidham
,
J. Raman Spectrosc.
9
,
90
(
1980
).
98.
A.
Langseth
and
R. C.
Lord
,
Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
16
,
6
(
1938
).
99.
G.
Zerbi
,
B.
Crawford
, Jr.
, and
J.
Overend
,
J. Chem. Phys.
38
,
127
(
1963
).
100.
M.
Kumar
,
M.
Srivastava
, and
R. A.
Yadav
,
Spectrochim. Acta, Part A
111
,
242
(
2013
).
101.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
102.
A. B.
Trofimov
,
H.
Köppel
, and
J.
Schirmer
,
J. Chem. Phys.
109
,
1025
(
1998
).
103.
D. M. P.
Holland
,
L.
Karlsson
, and
W.
von Niessen
,
J. Electron Spectrosc. Relat. Phenom.
113
,
221
(
2001
).
104.
D. M. P.
Holland
,
D.
Edvardsson
,
L.
Karlsson
,
R.
Maripuu
,
K.
Siegbahn
,
A. W.
Potts
, and
W.
von Niessen
,
Chem. Phys.
253
,
133
(
2000
).
105.
D. M. P.
Holland
,
A. W.
Potts
,
L.
Karlsson
,
M.
Stener
, and
P.
Decleva
,
Chem. Phys.
390
,
25
(
2011
).
106.
J. L.
Dehmer
,
D.
Dill
, and
S.
Wallace
,
Phys. Rev. Lett.
43
,
1005
(
1979
).

Supplementary Material

You do not currently have access to this content.