In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation/reduction of these biomolecules.

1.
R. M.
Wightman
,
L. J.
May
, and
A. C.
Michael
, “
Detection of dopamine dynamics in the brain
,”
Anal. Chem.
60
,
769A
793A
(
1988
).
2.
S.
Chumillas
,
M. C.
Figueiredo
,
V.
Climent
, and
J. M.
Feliu
, “
Study of dopamine reactivity on platinum single crystal electrode surfaces
,”
Electrochim. Acta
109
,
577
586
(
2013
).
3.
T.
Palomäki
,
S.
Chumillas
,
S.
Sainio
,
V.
Protopopova
,
M.
Kauppila
,
J.
Koskinen
,
V.
Climent
,
J. M.
Feliu
, and
T.
Laurila
, “
Electrochemical reactions of catechol, methylcatechol and dopamine at tetrahedral amorphous carbon (ta-C) thin film electrodes
,”
Diamond Relat. Mater.
59
,
30
39
(
2015
).
4.
S.
Sainio
,
T.
Palomäki
,
S.
Rhode
,
M.
Kauppila
,
O.
Pitkänen
,
T.
Selkälä
,
G.
Toth
,
M.
Moram
,
K.
Kordas
,
J.
Koskinen
, and
T.
Laurila
, “
Carbon nanotube (CNT) forest grown on diamond-like carbon (DLC) thin films significantly improves electrochemical sensitivity and selectivity towards dopamine
,”
Sens. Actuators, B
211
,
177
186
(
2015
).
5.
A. N.
Patel
,
S.
Tan
,
T. S.
Miller
,
J. V.
Macpherson
, and
P. R.
Unwin
, “
Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine
,”
Anal. Chem.
85
,
11755
11764
(
2013
).
6.
S.
Sainio
,
T.
Palomäki
,
N.
Tujunen
,
V.
Protopopova
,
J.
Koehne
,
K.
Kordas
,
J.
Koskinen
,
M.
Meyyappan
, and
T.
Laurila
, “
Integrated carbon nanostructures for detection of neurotransmitters
,”
Mol. Neurobiol.
52
,
859
866
(
2015
).
7.
S. H.
DuVall
and
R. L.
McCreery
, “
Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes
,”
Anal. Chem.
71
,
4594
4602
(
1999
).
8.
S. H.
DuVall
and
R. L.
McCreery
, “
Self-catalysis by catechols and quinones during heterogeneous electron transfer at carbon electrodes
,”
J. Am. Chem. Soc.
122
,
6759
6764
(
2000
).
9.
M. R.
Deakin
,
P. M.
Kovach
,
K. J.
Stutts
, and
R. M.
Wightman
, “
Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes
,”
Anal. Chem.
58
,
1474
1480
(
1986
).
10.
M. A.
Caro
,
R.
Zoubkoff
,
O.
Lopez-Acevedo
, and
T.
Laurila
, “
Atomic and electronic structure of tetrahedral amorphous carbon surfaces from density functional theory: Properties and simulation strategies
,”
Carbon
77
,
1168
(
2014
).
11.
J.
Robertson
, “
Diamond-like amorphous carbon
,”
Mater. Sci. Eng. R
37
,
129
281
(
2002
).
12.
S.
Sainio
,
D.
Nordlund
,
M. A.
Caro
,
R.
Gandhiraman
,
J.
Koehne
,
N.
Wester
,
J.
Koskinen
,
M.
Meyyappan
, and
T.
Laurila
, “
Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-C) thin film electrodes and implications of their electrochemical properties
,”
J. Phys. Chem. C
120
,
8298
8304
(
2016
).
13.
T.
Laurila
,
S.
Sainio
,
H.
Jiang
,
T.
Palomäki
,
O.
Pitkänen
,
K.
Kordas
, and
J.
Koskinen
, “
Multi-walled carbon nanotubes (MWCNTs) grown directly on tetrahedral amorphous carbon (ta-C): An interfacial study
,”
Diamond Relat. Mater.
56
,
54
59
(
2015
).
14.
T.
Palomäki
,
N.
Wester
,
M. A.
Caro
,
S.
Sainio
,
V.
Protopopova
,
J.
Koskinen
, and
T.
Laurila
, “
Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-c) thin films
,”
Electrochim. Acta
225
,
1
10
(
2017
).
15.
V. M.
Sánchez
,
M.
Sued
, and
D. A.
Scherlis
, “
First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent
,”
J. Chem. Phys.
131
,
174108
(
2009
).
16.
W.
Im
,
D.
Beglov
, and
B.
Roux
, “
Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation
,”
Comput. Phys. Commun.
111
,
59
75
(
1998
).
17.
A.
Held
and
M.
Walter
, “
Simplified continuum solvent model with a smooth cavity based on volumetric data
,”
J. Chem. Phys.
141
,
174108
(
2014
).
18.
G.
Makov
and
M. C.
Payne
, “
Periodic boundary conditions in ab initio calculations
,”
Phys. Rev. B
51
,
4014
(
1995
).
19.
S.
Iarlori
,
G.
Galli
,
F.
Gygi
,
M.
Parrinello
, and
E.
Tosatti
, “
Reconstruction of the diamond (111) surface
,”
Phys. Rev. Lett.
69
,
2947
(
1992
).
20.
J.
Neugebauer
and
M.
Scheffler
, “
Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111)
,”
Phys. Rev. B
46
,
16067
(
1992
).
21.
T.
Laurila
,
S.
Sainio
, and
M. A.
Caro
, “
Hybrid carbon based nanomaterials for electrochemical detection of biomolecules
,”
Prog. Mater. Sci.
88
,
499
594
(
2017
).
22.
M. A.
Caro
,
R.
Zoubkoff
,
O.
Lopez-Acevedo
, and
T.
Laurila
, “
Corrigendum to ‘Atomic and electronic structure of tetrahedral amorphous carbon surfaces from density functional theory: Properties and simulation strategies’ [Carbon 77 (2014) 1168–1182]
,”
Carbon
82
,
612
613
(
2015
).
23.
See https://pubchem.ncbi.nlm.nih.gov/ for information about PubChem database.
24.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
2004
).
25.
See https://wiki.fysik.dtu.dk/gpaw/ for installation and documentation.
26.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
28.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
29.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular Van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
30.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
31.
L. S.
Panchakarla
,
K. S.
Subrahmanyam
,
S. K.
Saha
,
A.
Govindaraj
,
H. R.
Krishnamurthy
,
U. V.
Waghmare
, and
C. N. R.
Rao
, “
Synthesis, structure, and properties of boron-and nitrogen-doped graphene
,”
Adv. Mater.
21
,
4726
4730
(
2009
).
You do not currently have access to this content.