This article describes the structure and the electronic properties of a series of layered perovskites of a general formula (A+)2(SnX4)−2 where X = I, Br and A+ is an organic cation, either formamidinium, 1-methylimidazolium, or phenylethylammonium. For each system, two conformations are considered, with eclipsed or staggered stacking of the adjacent inorganic layers. Geometry optimizations are performed at the density functional theory level with generalized gradient approximation (GGA) functional and semiempirical correction for dispersion energies; band profiles and bandgaps are computed including both spin orbit coupling (SOC) and correlation (GW) effects through an additive scheme. The theoretical procedures are validated by reproducing the experimental data of a well known 3D tin iodide perovskite. The results, combined with the calculations previously reported on PbI4 analogues, allow us to discuss the effect of cation, metal, and halide substitution in these systems and in particular to explore the possibility of changing the electronic bandgap as required by different applications. The balance of SOC and GW effects depends on the chemical nature of the studied perovskites and strongly influences the value of the simulated bandgap.

1.
B.
Saparov
and
D. B.
Mitzi
, “
Organic-inorganic perovskites: Structural versatility for functional materials design
,”
Chem. Rev.
116
(
7
),
4558
4596
(
2016
).
2.
L.
Etgar
,
P.
Gao
,
Z.
Xue
,
Q.
Peng
,
A. K.
Chandiran
,
B.
Liu
,
Md. K.
Nazeeruddin
, and
M.
Grätzel
, “
Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells
,”
J. Am. Chem. Soc.
134
,
17396
17399
(
2012
).
3.
J. H.
Heo
,
S. H.
Im
,
J. H.
Noh
,
T. N.
Mandal
,
C.-S.
Lim
,
J. A.
Chang
,
Y. H.
Lee
,
H.-J.
Kim
,
A.
Sarkar
,
M. K.
Nazeeruddin
,
M.
Grätzel
, and
S. I.
Seok
, “
Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
,”
Nat. Photonics
7
(
6
),
486
491
(
2013
).
4.
N.-G.
Park
, “
Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell
,”
J. Phys. Chem. Lett.
4
,
2423
2429
(
2013
).
5.
H. J.
Snaith
, “
Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells
,”
J. Phys. Chem. Lett.
4
,
3623
3630
(
2013
).
6.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
, “
The emergence of perovskite solar cells
,”
Nat. Photonics
8
(
7
),
506
514
(
2014
).
7.
S.
Luo
and
W. A.
Daoud
, “
Recent progress in organic-inorganic halide perovskite solar cells: Mechanisms and material design
,”
J. Mater. Chem. A
3
(
17
),
8992
9010
(
2015
).
8.
S.
Collavini
,
S. F.
Völker
, and
J. L.
Delgado
, “
Understanding the outstanding power conversion efficiency of perovskite-based solar cells
,”
Angew. Chem., Int. Ed.
54
(
34
),
9757
9759
(
2015
).
9.
L.
Pedesseau
,
D.
Sapori
,
B.
Traore
,
R.
Robles
,
H.-H.
Fang
,
M. A.
Loi
,
H.
Tsai
,
W.
Nie
,
J.-C.
Blancon
,
A.
Neukirch
,
S.
Tretiak
,
A. D.
Mohite
,
C.
Katan
,
J.
Even
, and
M.
Kepenekian
, “
Advances and promises of layered halide hybrid perovskite semiconductors
,”
ACS Nano
10
(
11
),
9776
9786
(
2016
).
10.
H.
Zhou
,
Q.
Chen
,
G.
Li
,
S.
Luo
,
T.-B.
Song
,
H.-S.
Duan
,
Z.
Hong
,
J.
You
,
Y.
Liu
, and
Y.
Yang
, “
Interface engineering of highly efficient perovskite solar cells
,”
Science
345
(
6196
),
542
546
(
2014
).
11.
H.-S.
Kim
,
C.-R.
Lee
,
J.-H.
Im
,
K.-B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S.-J.
Moon
,
R.
Humphry-Baker
,
J.-H.
Yum
,
J. E.
Moser
,
M.
Grätzel
, and
N.-G.
Park
, “
Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
,”
Sci. Rep.
2
,
591
(
2012
).
12.
D.
Bi
,
W.
Tress
,
M. I.
Dar
,
P.
Gao
,
J.
Luo
,
C.
Renevier
,
K.
Schenk
,
A.
Abate
,
F.
Giordano
,
J.-P.
Correa Baena
,
J.-D.
Decoppet
,
S. M.
Zakeeruddin
,
M. K.
Nazeeruddin
,
M.
Grätzel
, and
A.
Hagfeldt
, “
Efficient luminescent solar cells based on tailored mixed-cation perovskites
,”
Sci. Adv.
2
(
1
),
e1501170
(
2016
).
13.
M.
Saliba
,
T.
Matsui
,
J.-Y.
Seo
,
K.
Domanski
,
J.-P.
Correa-Baena
,
M. K.
Nazeeruddin
,
S. M.
Zakeeruddin
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldt
, and
M.
Grätzel
, “
Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency
,”
Energy Environ. Sci.
9
(
6
),
1989
1997
(
2016
).
14.
J.
Seo
,
J. H.
Noh
, and
S. I.
Seok
, “
Rational strategies for efficient perovskite solar cells
,”
Acc. Chem. Res.
49
(
3
),
562
572
(
2016
).
15.
T.
Kinoshita
,
K.
Nonomura
,
N. J.
Jeon
,
F.
Giordano
,
A.
Abate
,
S.
Uchida
,
T.
Kubo
,
S. I.
Seok
,
M. K.
Nazeeruddin
,
A.
Hagfeldt
,
M.
Grätzel
, and
H.
Segawa
, “
Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells
,”
Nat. Commun.
6
,
8834
(
2015
).
16.
See http://www.nrel.gov/pv/assets/images/efficiency-chart.png for information about the record efficiencies of photovoltaic systems (January
2017
).
17.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
, “
Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties
,”
Inorg. Chem.
52
,
9019
9038
(
2013
).
18.
N. K.
Noel
,
S. D.
Stranks
,
A.
Abate
,
C.
Wehrenfennig
,
S.
Guarnera
,
A.-A.
Haghighirad
,
A.
Sadhanala
,
G. E.
Eperon
,
S. K.
Pathak
,
M. B.
Johnston
,
A.
Petrozza
,
L. M.
Herz
, and
H. J.
Snaith
, “
Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
,”
Energy Environ. Sci.
7
(
9
),
3061
3068
(
2014
).
19.
F.
Hao
,
C. C.
Stoumpos
,
D. H.
Cao
,
R. P. H.
Chang
, and
M. G.
Kanatzidis
, “
Lead-free solid-state organic-inorganic halide perovskite solar cells
,”
Nat. Photonics
8
(
6
),
489
494
(
2014
).
20.
M. M.
Lee
,
J.
Teuscher
,
T.
Miyasaka
,
T. N.
Murakami
, and
H. J.
Snaith
, “
Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
,”
Science
338
(
6107
),
643
647
(
2012
).
21.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
, “
Efficient planar heterojunction perovskite solar cells by vapour deposition
,”
Nature
501
(
7467
),
395
398
(
2013
).
22.
J. H.
Noh
,
S. H.
Im
,
J. H.
Heo
,
T. N.
Mandal
, and
S. I.
Seok
, “
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells
,”
Nano Lett.
13
(
4
),
1764
1769
(
2013
).
23.
C.
Yi
,
J.
Luo
,
S.
Meloni
,
A.
Boziki
,
N.
Ashari-Astani
,
C.
Grätzel
,
S. M.
Zakeeruddin
,
U.
Röthlisberger
, and
M.
Grätzel
, “
Entropic stabilization of mixed a-cation ABX3 metal halide perovskites for high performance perovskite solar cells
,”
Energy Environ. Sci.
9
(
2
),
656
662
(
2016
).
24.
J.-H.
Im
,
J.
Chung
,
S.-J.
Kim
, and
N.-G.
Park
, “
Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3
,”
Nanoscale Res. Lett.
7
,
353
(
2012
).
25.
W.
Peng
,
X.
Miao
,
V.
Adinolfi
,
E.
Alarousu
,
O.
El Tall
,
A.-H.
Emwas
,
C.
Zhao
,
G.
Walters
,
J.
Liu
,
O.
Ouellette
,
J.
Pan
,
B.
Murali
,
E. H.
Sargent
,
O. F.
Mohammed
, and
O. M.
Bakr
, “
Engineering of CH3NH3PbI3 perovskite crystals by alloying large organic cations for enhanced thermal stability and transport properties
,”
Angew. Chem., Int. Ed.
55
(
36
),
10686
10690
(
2016
).
26.
D. B.
Mitzi
, “
Synthesis, structure, and properties of organic-inorganic perovskites and related materials
,” in
Progress in Inorganic Chemistry
, edited by
K. D.
Karlin
(
John Wiley & Sons, Inc.
,
2007
), pp.
1
121
.
27.
D. G.
Billing
and
A.
Lemmerer
, “
Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4],n=4,5and6
,”
Acta Crystallogr., Sect. B: Struct. Sci.
63
(
5
),
735
747
(
2007
).
28.
D. G.
Billing
and
A.
Lemmerer
, “
Inorganic-organic hybrid materials incorporating primary cyclic ammonium cations: The lead iodide series
,”
CrystEngComm
9
(
3
),
236
244
(
2007
).
29.
K.
Pradeesh
,
J. J.
Baumberg
, and
G. V.
Prakash
, “
In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells
,”
Appl. Phys. Lett.
95
(
3
),
033309
(
2009
).
30.
A.
Lemmerer
and
D. G.
Billing
, “
Effect of heteroatoms in the inorganic-organic layered perovskite-type hybrids [(ZCnH2nNH3)2PbI4], n = 2, 3, 4, 5, 6; Z = OH, Br and I; and [(H3NC2H4S2C2H4NH3)PbI4]
,”
CrystEngComm
12
(
4
),
1290
1301
(
2010
).
31.
A.
Lemmerer
and
D. G.
Billing
, “
Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 7, 8, 9 and 10
,”
Dalton Trans.
41
(
4
),
1146
1157
(
2012
).
32.
T.
Ishihara
,
J.
Takahashi
, and
T.
Goto
, “
Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4
,”
Phys. Rev. B
42
(
17
),
11099
11107
(
1990
).
33.
Q.
Chen
,
N.
De Marco
,
Y.
Yang
,
T.-B.
Song
,
C.-C.
Chen
,
H.
Zhao
,
Z.
Hong
,
H.
Zhou
, and
Y.
Yang
, “
Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications
,”
Nano Today
10
(
3
),
355
396
(
2015
).
34.
C. R.
Kagan
,
D. B.
Mitzi
, and
C. D.
Dimitrakopoulos
, “
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors
,”
Science
286
(
5441
),
945
947
(
1999
).
35.
Z.-K.
Tan
,
R. S.
Moghaddam
,
M. L.
Lai
,
P.
Docampo
,
R.
Higler
,
F.
Deschler
,
M.
Price
,
A.
Sadhanala
,
L. M.
Pazos
,
D.
Credgington
,
F.
Hanusch
,
T.
Bein
,
H. J.
Snaith
, and
R. H.
Friend
, “
Bright light-emitting diodes based on organometal halide perovskite
,”
Nat. Nanotechnol.
9
(
9
),
687
692
(
2014
).
36.
X.
Wu
,
M. T.
Trinh
,
D.
Niesner
,
H.
Zhu
,
Z.
Norman
,
J. S.
Owen
,
O.
Yaffe
,
B. J.
Kudisch
, and
X.-Y.
Zhu
, “
Trap states in lead iodide perovskites
,”
J. Am. Chem. Soc.
137
(
5
),
2089
2096
(
2015
).
37.
L.
Dou
,
A. B.
Wong
,
Y.
Yu
,
M.
Lai
,
N.
Kornienko
,
S. W.
Eaton
,
A.
Fu
,
C. G.
Bischak
,
J.
Ma
,
T.
Ding
,
N. S.
Ginsberg
,
L.-W.
Wang
,
A. P.
Alivisatos
, and
P.
Yang
, “
Atomically thin two-dimensional organic-inorganic hybrid perovskites
,”
Science
349
(
6255
),
1518
1521
(
2015
).
38.
F.
Deschler
,
M.
Price
,
S.
Pathak
,
L. E.
Klintberg
,
D.-D.
Jarausch
,
R.
Higler
,
S.
Httner
,
T.
Leijtens
,
S. D.
Stranks
,
H. J.
Snaith
,
M.
Atatre
,
R. T.
Phillips
, and
R. H.
Friend
, “
High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors
,”
J. Phys. Chem. Lett.
5
(
8
),
1421
1426
(
2014
).
39.
D. B.
Mitzi
, “
A layered solution crystal growth technique and the crystal structure of (C6H5C2H4NH3)2PbCl4
,”
J. Solid State Chem.
145
(
2
),
694
704
(
1999
).
40.
K.
Gauthron
,
J.-S.
Lauret
,
L.
Doyennette
,
G.
Lanty
,
A.
Al Choueiry
,
S. J.
Zhang
,
A.
Brehier
,
L.
Largeau
,
O.
Mauguin
,
J.
Bloch
, and
E.
Deleporte
, “
Optical spectroscopy of two-dimensional layered (C6H5C2H4NH3)2PbI4 perovskite
,”
Opt. Express
18
(
6
),
5912
5919
(
2010
).
41.
S.
Sourisseau
,
N.
Louvain
,
W.
Bi
,
N.
Mercier
,
D.
Rondeau
,
F.
Boucher
,
J.-Y.
Buzaré
, and
C.
Legein
, “
Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface
,”
Chem. Mater.
19
(
3
),
600
607
(
2007
).
42.
D. H.
Cao
,
C. C.
Stoumpos
,
O. K.
Farha
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
2D homologous perovskites as light-absorbing materials for solar cell applications
,”
J. Am. Chem. Soc.
137
(
24
),
7843
7850
(
2015
).
43.
J.
Even
,
L.
Pedesseau
,
J.-M.
Jancu
, and
C.
Katan
, “
Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications
,”
J. Phys. Chem. Lett.
4
,
2999
3005
(
2013
).
44.
E.
Mosconi
,
A.
Amat
,
Md. K.
Nazeeruddin
,
M.
Grätzel
, and
F.
De Angelis
, “
First-principles modeling of mixed halide organometal perovskites for photovoltaic applications
,”
J. Phys. Chem. C
117
,
13902
13913
(
2013
).
45.
F.
Brivio
,
A. B.
Walker
, and
A.
Walsh
, “
Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles
,”
APL Mater.
1
(
4
),
042111
(
2013
).
46.
W.-J.
Yin
,
T.
Shi
, and
Y.
Yan
, “
Unique properties of halide perovskites as possible origins of the superior solar cell performance
,”
Adv. Mater.
26
(
27
),
4653
4658
(
2014
).
47.
J.
Kim
,
S.-H.
Lee
,
J. H.
Lee
, and
K.-H.
Hong
, “
The role of intrinsic defects in methylammonium lead iodide perovskite
,”
J. Phys. Chem. Lett.
5
(
8
),
1312
1317
(
2014
).
48.
P.
Umari
,
E.
Mosconi
, and
F.
De Angelis
, “
Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for solar cell applications
,”
Sci. Rep.
4
,
4467
(
2014
).
49.
E.
Mosconi
,
E.
Ronca
, and
F.
De Angelis
, “
First-principles investigation of the TiO2/organohalide perovskites interface: The role of interfacial chlorine
,”
J. Phys. Chem. Lett.
5
(
15
),
2619
2625
(
2014
).
50.
A.
Torres
and
L. G. C.
Rego
, “
Surface effects and adsorption of methoxy anchors on hybrid lead iodide perovskites: Insights for spiro-MeOTAD attachment
,”
J. Phys. Chem. C
118
(
46
),
26947
26954
(
2014
).
51.
E.
Mosconi
,
P.
Umari
, and
F.
De Angelis
, “
Electronic and optical properties of mixed Sn–Pb organohalide perovskites: A first principles investigation
,”
J. Mater. Chem. A
3
(
17
),
9208
9215
(
2015
).
52.
L.
Zhang
and
P. H.-L.
Sit
, “
Ab initio study of interaction of water, hydroxyl radicals, and hydroxide ions with CH3NH3PbI3 and CH3NH3PbBr3 surfaces
,”
J. Phys. Chem. C
119
(
39
),
22370
22378
(
2015
).
53.
J.
Even
,
L.
Pedesseau
,
C.
Katan
,
M.
Kepenekian
,
J.-S.
Lauret
,
D.
Sapori
, and
E.
Deleporte
, “
Solid-state physics perspective on hybrid perovskite semiconductors
,”
J. Phys. Chem. C
119
(
19
),
10161
10177
(
2015
).
54.
T.
Umebayashi
,
K.
Asai
,
T.
Kondo
, and
A.
Nakao
, “
Electronic structures of lead iodide based low-dimensional crystals
,”
Phys. Rev. B
67
(
15
),
155405-1
155405-6
(
2003
).
55.
J.
Even
,
L.
Pedesseau
,
M.-A.
Dupertuis
,
J.-M.
Jancu
, and
C.
Katan
, “
Electronic model for self-assembled hybrid organic/perovskite Semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling
,”
Phys. Rev. B
86
(
20
),
205301
(
2012
).
56.
A.
Fraccarollo
,
V.
Cantatore
,
G.
Boschetto
,
L.
Marchese
, and
M.
Cossi
, “
Ab initio modeling of 2D layered organohalide lead perovskites
,”
J. Chem. Phys.
144
(
16
),
164701
(
2016
).
57.
T. D.
Huan
,
V. N.
Tuoc
, and
N. V.
Minh
, “
Layered structures of organic/inorganic hybrid halide perovskites
,”
Phys. Rev. B
93
(
9
),
094105
(
2016
).
58.
L.
Mao
,
H.
Tsai
,
W.
Nie
,
L.
Ma
,
J.
Im
,
C. C.
Stoumpos
,
C. D.
Malliakas
,
F.
Hao
,
M. R.
Wasielewski
,
A. D.
Mohite
, and
M. G.
Kanatzidis
, “
Role of organic counterion in lead- and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells
,”
Chem. Mater.
28
(
21
),
7781
7792
(
2016
).
59.
R.
Dovesi
,
R.
Orlando
,
B.
Civalleri
,
C.
Roetti
,
V. R.
Saunders
, and
C. M.
Zicovich-Wilson
, “
CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals
,”
Z. Kristallogr.
220
(
5-6
),
571
573
(
2005
).
60.
R.
Dovesi
,
V. R.
Saunders
,
C.
Roetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
K.
Doll
,
N. M.
Harrison
,
B.
Civalleri
,
I. J.
Bush
,
Ph.
D’Arco
, and
M.
Llunell
,
CRYSTAL09 User’s Manual
(
Università di Torino
,
Torino
,
2010
).
61.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
62.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
(
15
),
1787
1799
(
2006
).
63.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
64.
K. A.
Peterson
,
B. C.
Shepler
,
D.
Figgen
, and
H.
Stoll
, “
On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions
,”
J. Phys. Chem. A
110
(
51
),
13877
13883
(
2006
).
65.
B.
Metz
,
H.
Stoll
, and
M.
Dolg
, “
Small-core multiconfiguration-Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO
,”
J. Chem. Phys.
113
(
7
),
2563
2569
(
2000
).
66.
L.
Pedesseau
,
J.-M.
Jancu
,
A.
Rolland
,
E.
Deleporte
,
C.
Katan
, and
J.
Even
, “
Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications
,”
Opt. Quantum. Electron.
46
(
10
),
1225
1232
(
2014
).
67.
F.
Chiarella
,
A.
Zappettini
,
F.
Licci
,
I.
Borriello
,
G.
Cantele
,
D.
Ninno
,
A.
Cassinese
, and
R.
Vaglio
, “
Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X = Cl, Br)
,”
Phys. Rev. B
77
(
4
),
045129
(
2008
).
68.
J. L.
Knutson
,
J. D.
Martin
, and
D. B.
Mitzi
, “
Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating
,”
Inorg. Chem.
44
(
13
),
4699
4705
(
2005
).
69.
G. C.
Papavassiliou
,
I. B.
Koutselas
,
A.
Terzis
, and
M.-H.
Whangbo
, “
Structural and electronic properties of the natural quantum-well system (C6H5CH2CH2NH3)2SnI4
,”
Solid State Commun.
91
(
9
),
695
698
(
1994
).
70.
D. B.
Mitzi
,
C. D.
Dimitrakopoulos
, and
L. L.
Kosbar
, “
Structurally tailored organic-inorganic perovskites: Optical properties and solution-processed channel materials for thin-film transistors
,”
Chem. Mater.
13
(
10
),
3728
3740
(
2001
).
71.
Z.
Xu
,
D. B.
Mitzi
,
C. D.
Dimitrakopoulos
, and
K. R.
Maxcy
, “
Semiconducting perovskites (2-XC6H4C2H4NH3)2Snl4 (X = F, Cl, Br): Steric interaction between the organic and inorganic layers
,”
Inorg. Chem.
42
(
6
),
2031
2039
(
2003
).
72.
Z.
Xu
,
D. B.
Mitzi
, and
D. R.
Medeiros
, “
[(CH3)3NCH2CH2NH3]SnI4: A layered perovskite with quaternary/primary ammonium dications and short interlayer iodine-iodine contacts
,”
Inorg. Chem.
42
(
5
),
1400
1402
(
2003
).
73.
D. B.
Mitzi
, “
Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb)
,”
Chem. Mater.
8
(
3
),
791
800
(
1996
).
74.
Z.
Xu
and
D. B.
Mitzi
, “
[CH3(CH2)11NH3]SnI3: A hybrid semiconductor with MoO3-type tin(II) iodide layers
,”
Inorg. Chem.
42
(
21
),
6589
6591
(
2003
).
75.
M. R.
Filip
,
G. E.
Eperon
,
H. J.
Snaith
, and
F.
Giustino
, “
Steric engineering of metal-halide perovskites with tunable optical band gaps
,”
Nat. Commun.
5
,
5757
(
2014
).
76.
S.
Andalibi
,
A.
Rostami
,
G.
Darvish
, and
M. K.
Moravvej-Farshi
, “
Band gap engineering of organo metal lead halide perovskite photovoltaic absorber
,”
Opt. Quantum Electron.
48
(
4
),
258
(
2016
).
77.
S.
Ahmad
,
P. K.
Kanaujia
,
H. J.
Beeson
,
A.
Abate
,
F.
Deschler
,
D.
Credgington
,
U.
Steiner
,
G. V.
Prakash
, and
J. J.
Baumberg
, “
Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets
,”
ACS Appl. Mater. Interfaces
7
(
45
),
25227
25236
(
2015
).
78.
V.
D’Innocenzo
,
G.
Grancini
,
M. J. P.
Alcocer
,
A. R. S.
Kandada
,
S. D.
Stranks
,
M. M.
Lee
,
G.
Lanzani
,
H. J.
Snaith
, and
A.
Petrozza
, “
Excitons versus free charges in organo-lead tri-halide perovskites
,”
Nat. Commun.
5
,
3586
(
2014
).
79.
Y.
Takahashi
,
R.
Obara
,
K.
Nakagawa
,
M.
Nakano
,
J.-Y.
Tokita
, and
T.
Inabe
, “
Tunable charge transport in soluble organic-inorganic hybrid semiconductors
,”
Chem. Mater.
19
(
25
),
6312
6316
(
2007
).

Supplementary Material

You do not currently have access to this content.