The information about the structure of dimethyl sulfoxide (DMSO)-water mixtures at relatively low DMSO mole fractions is an important step in order to understand their cryoprotective properties as well as the solvation process of proteins and amino acids. Classical MD simulations, using the potential model combination that best reproduces the free energy of mixing of these compounds, are used to analyze the local structure of DMSO-water mixtures at DMSO mole fractions below 0.2. Significant changes in the local structure of DMSO are observed around the DMSO mole fraction of 0.1. The array of evidence, based on the cluster and the metric and topological parameters of the Voronoi polyhedra distributions, indicates that these changes are associated with the simultaneous increase of the number of DMSO-water and decrease of water-water hydrogen bonds with increasing DMSO concentration. The inversion between the dominance of these two types of H-bonds occurs around XDMSO = 0.1, above which the DMSO-DMSO interactions also start playing an important role. In other words, below the DMSO mole fraction of 0.1, DMSO molecules are mainly solvated by water molecules, while above it, their solvation shell consists of a mixture of water and DMSO. The trigonal, tetrahedral, and trigonal bipyramidal distributions of water shift to lower corresponding order parameter values indicating the loosening of these orientations. Adding DMSO does not affect the hydrogen bonding between a reference water molecule and its first neighbor hydrogen bonded water molecules, while it increases the bent hydrogen bond geometry involving the second ones. The close-packed local structure of the third, fourth, and fifth water neighbors also is reinforced. In accordance with previous theoretical and experimental data, the hydrogen bonding between water and the first, the second, and the third DMSO neighbors is stronger than that with its corresponding water neighbors. At a given DMSO mole fraction, the behavior of the intensity of the high orientational order parameter values indicates that water molecules are more ordered in the vicinity of the hydrophilic group while their structure is close-packed near the hydrophobic group of DMSO.

1.
M. I.
Voronova
,
T. N.
Lebedeva
,
M. V.
Radugin
,
O. V.
Surov
,
A. N.
Prusov
, and
A. G.
Zakharov
,
J. Mol. Liq.
126
(
1–3
),
124
129
(
2006
).
2.
T.
Arakawa
,
Y.
Kita
, and
S. N.
Timasheff
,
Biophys. Chem.
131
(
1–3
),
62
70
(
2007
).
3.
A. L.
Fink
and
A. I.
Ahmed
,
Nature
263
(
5575
),
294
297
(
1976
).
4.
A.
Huang
,
C.
Liu
,
L.
Ma
,
Z.
Tong
, and
R.
Lin
,
J. Chem. Thermodyn.
49
,
95
103
(
2012
).
5.
P.
Westh
,
J. Phys. Chem.
98
(
12
),
3222
3225
(
1994
).
6.
J. T. W.
Lai
,
F. W.
Lau
,
D.
Robb
,
P.
Westh
,
G.
Nielsen
,
C.
Trandum
,
A.
Hvidt
, and
Y.
Koga
,
J. Solution Chem.
24
(
1
),
89
102
(
1995
).
7.
Y.
Koga
,
Solution Thermodynamics and Its Application to Aqueous Solutions
(
Elsevier
,
Amsterdam
,
2007
), pp.
175
203
.
8.
J. J. M.
Lindberg
and
M.
Corrado
,
Acta Chem. Scand.
17
,
1477
1478
(
1963
).
9.
D. D.
Macdonald
,
M. D.
Smith
, and
J. B.
Hyne
,
Can. J. Chem.
49
(
17
),
2817
2821
(
1971
).
10.
C.
De Visser
,
W. J. M.
Heuvelsland
,
L. A.
Dunn
, and
G.
Somsen
,
J. Chem. Soc., Faraday Trans. 1
74
(
0
),
1159
1169
(
1978
).
11.
F.
Rallo
,
F.
Rodante
, and
P.
Silvestroni
,
Thermochim. Acta
1
(
4
),
311
316
(
1970
).
12.
Z. S.
Klemenkova
and
E. G.
Kononova
,
J. Solution Chem.
44
(
2
),
280
292
(
2015
).
13.
Y.
Koga
,
Y.
Kasahara
,
K.
Yoshino
, and
K.
Nishikawa
,
J. Solution Chem.
30
(
10
),
885
893
(
2001
).
14.
S. A.
Markarian
and
A. M.
Terzyan
,
J. Chem. Eng. Data
52
(
5
),
1704
1709
(
2007
).
15.
V. M.
Wallace
,
N. R.
Dhumal
,
F. M.
Zehentbauer
,
H. J.
Kim
, and
J.
Kiefer
,
J. Phys. Chem. B
119
(
46
),
14780
14789
(
2015
).
16.
K.
Mizuno
,
S.
Imafuji
,
T.
Ochi
,
T.
Ohta
, and
S.
Maeda
,
J. Phys. Chem. B
104
(
47
),
11001
11005
(
2000
).
17.
Z.
Lu
,
E.
Manias
,
D. D.
Macdonald
, and
M.
Lanagan
,
J. Phys. Chem. A
113
(
44
),
12207
12214
(
2009
).
18.
S.
Lotze
,
C. C. M.
Groot
,
C.
Vennehaug
, and
H. J.
Bakker
,
J. Phys. Chem. B
119
(
16
),
5228
5239
(
2015
).
19.
N.
Engel
,
K.
Atak
,
K. M.
Lange
,
M.
Gotz
,
M.
Soldatov
,
R.
Golnak
,
E.
Suljoti
,
J.-E.
Rubensson
, and
E. F.
Aziz
,
J. Phys. Chem. Lett.
3
(
24
),
3697
3701
(
2012
).
20.
D. N.
Shin
,
J. W.
Wijnen
,
J. B. F. N.
Engberts
, and
A.
Wakisaka
,
J. Phys. Chem. B
105
(
29
),
6759
6762
(
2001
).
21.
M.
Chalaris
and
J.
Samios
,
J. Mol. Liq.
98-99
,
401
411
(
2002
).
22.
H. J. C.
Berebdsen
,
J. P. M.
Postma
,
W. F.
van Gusteren
, and
J.
Hermans
,
Intermolecular Forces
(
B. Pullman
,
Dordrecht
,
1981
).
23.
A.
Luzar
and
D.
Chandler
,
J. Chem. Phys.
98
(
10
),
8160
8173
(
1993
).
24.
R. L.
Mancera
,
M.
Chalaris
,
K.
Refson
, and
J.
Samios
,
Phys. Chem. Chem. Phys.
6
(
1
),
94
102
(
2004
).
25.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
26.
P. A.
Bopp
,
J.
Samios
, and
M. D.
Zeidler
,
J. Mol. Liq.
110
(
1–3
),
1
2
(
2004
).
27.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
,
J. Comput. Chem.
25
(
13
),
1656
1676
(
2004
).
28.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
29.
S.
Roy
,
S.
Banerjee
,
N.
Biyani
,
B.
Jana
, and
B.
Bagchi
,
J. Phys. Chem. B
115
(
4
),
685
692
(
2011
).
30.
J.
Gujt
,
E.
Cázares Vargas
,
L.
Pusztai
, and
O.
Pizio
,
J. Mol. Liq.
228
,
71
80
(
2017
).
31.
A.
Idrissi
,
I.
Vyalov
,
M.
Kiselev
, and
P.
Jedlovszky
,
Phys. Chem. Chem. Phys.
13
(
36
),
16272
16281
(
2011
).
32.
A.
Pinke
and
P.
Jedlovszky
,
J. Phys. Chem. B
116
(
20
),
5977
5984
(
2012
).
33.
P.
Jedlovszky
,
A.
Idrissi
, and
G.
Jancsó
,
J. Chem. Phys.
130
(
12
),
124516
(
2009
).
34.
A.
Idrissi
,
R. D.
Oparin
,
S. P.
Krishtal
,
S. V.
Krupin
,
E. A.
Vorobiev
,
A. I.
Frolov
,
L.
Dubois
, and
M. G.
Kiselev
,
Faraday Discuss.
167
(
0
),
239
262
(
2013
).
35.
A.
Vishnyakov
,
A. P.
Lyubartsev
, and
A.
Laaksonen
,
J. Phys. Chem. A
105
(
10
),
1702
1710
(
2001
).
36.
A.
Idrissi
,
B.
Marekha
,
M.
Barj
, and
P.
Jedlovszky
,
J. Phys. Chem. B
118
(
29
),
8724
8733
(
2014
).
37.
A.
Idrissi
,
B.
Marekha
,
M.
Kiselev
, and
P.
Jedlovszky
,
Phys. Chem. Chem. Phys.
17
(
5
),
3470
3481
(
2015
).
38.
A.
Idrissi
,
K.
Polok
,
W.
Gadomski
,
I.
Vyalov
,
A.
Agapov
,
M.
Kiselev
,
M.
Barj
, and
P.
Jedlovszky
,
Phys. Chem. Chem. Phys.
14
(
17
),
5979
5987
(
2012
).
39.
A.
Idrissi
,
K.
Polok
,
M.
Barj
,
B.
Marekha
,
M.
Kiselev
, and
P.
Jedlovszky
,
J. Phys. Chem. B
117
(
50
),
16157
16164
(
2013
).
40.
W.
Smith
and
T. R.
Forester
,
J. Mol. Graphics
14
(
3
),
136
141
(
1996
).
41.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
(
8
),
3684
3690
(
1984
).
42.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. A
373
(
1752
),
27
56
(
1980
).
43.
P. P.
Ewald
,
Ann. Phys.
369
(
3
),
253
287
(
1921
).
44.
A.
Idrissi
,
P.
Damay
, and
M.
Kiselev
,
Chem. Phys.
332
(
1
),
139
143
(
2007
).
45.
A.
Idrissi
,
M.
Gerard
,
P.
Damay
,
M.
Kiselev
,
Y.
Puhovsky
,
E.
Cinar
,
P.
Lagant
, and
G.
Vergoten
,
J. Phys. Chem. B
114
(
13
),
4731
4738
(
2010
).
46.
I.
Vyalov
,
M.
Kiselev
,
T.
Tassaing
,
J. C.
Soetens
, and
A.
Idrissi
,
J. Phys. Chem. B
114
(
46
),
15003
15010
(
2010
).
47.
B.
Okabe
,
K.
Boots
,
S.
Sugihara
, and
S. N.
Chiu
,
Spatial Tessellations Concepts and Applications of Voronoi Diagrams
(
John Wiley
,
Chichester
,
2000
).
48.
G.
Ruocco
,
M.
Sampoli
,
A.
Torcini
, and
R.
Vallauri
,
J. Chem. Phys.
99
(
10
),
8095
8104
(
1993
).
49.
A.
Baranyai
and
I.
Ruff
,
J. Chem. Phys.
85
(
1
),
365
373
(
1986
).
50.
P.
Jedlovszky
,
J. Chem. Phys.
111
(
13
),
5975
5985
(
1999
).
51.
A.
Idrissi
,
P.
Damay
,
K.
Yukichi
, and
P.
Jedlovszky
,
J. Chem. Phys.
129
(
16
),
164512
(
2008
).
52.
A. K.
Soper
and
A.
Luzar
,
J. Chem. Phys.
97
(
2
),
1320
1331
(
1992
).
53.
A. K.
Soper
and
A.
Luzar
,
J. Phys. Chem.
100
(
4
),
1357
1367
(
1996
).
54.
A.
Luzar
,
J. Chem. Phys.
91
(
6
),
3603
3613
(
1989
).
55.
E.
Duboué-Dijon
and
D.
Laage
,
J. Phys. Chem. B
119
(
26
),
8406
8418
(
2015
).
56.
P. L.
Chau
and
A. J.
Hardwick
,
Mol. Phys.
93
(
3
),
511
518
(
1998
).
57.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
(
6818
),
318
321
(
2001
).
58.
R. H.
Henchman
and
S. J.
Cockram
,
Faraday Discuss.
167
(
0
),
529
550
(
2013
).
59.
D.
Bandyopadhyay
,
S.
Mohan
,
S. K.
Ghosh
, and
N.
Choudhury
,
J. Phys. Chem. B
117
(
29
),
8831
8843
(
2013
).
60.
D.
Bandyopadhyay
,
S.
Mohan
,
S. K.
Ghosh
, and
N.
Choudhury
,
J. Phys. Chem. B
118
(
40
),
11757
11768
(
2014
).
61.
C.
Branca
,
S.
Maccarrone
,
S.
Magazù
,
G.
Maisano
,
S. M.
Bennington
, and
J.
Taylor
,
J. Chem. Phys.
122
(
17
),
174513
(
2005
).
62.
M. D.
Elola
and
B. M.
Ladanyi
,
J. Chem. Phys.
125
(
18
),
184506
(
2006
).
63.
S.
Paul
and
S.
Paul
,
J. Mol. Liq.
211
,
986
999
(
2015
).
64.
R.
Politi
,
L.
Sapir
, and
D.
Harries
,
J. Phys. Chem. A
113
(
26
),
7548
7555
(
2009
).
65.
I.
Skarmoutsos
,
M.
Masia
, and
E.
Guardia
,
Chem. Phys. Lett.
648
,
102
108
(
2016
).
66.
R.
Ludwig
,
T. C.
Farrar
, and
M. D.
Zeidler
,
J. Phys. Chem.
98
(
27
),
6684
6687
(
1994
).
67.
S.
Velaga
,
R.
Berger
, and
J.
Carlfors
,
Pharm. Res.
19
(
10
),
1564
1571
(
2002
).
68.
F.
Sciortino
,
A.
Geiger
, and
H. E.
Stanley
,
Nature
354
(
6350
),
218
221
(
1991
).
69.
A. M.
Saitta
,
T.
Strässle
,
G.
Rousse
,
G.
Hamel
,
S.
Klotz
,
R. J.
Nelmes
, and
J. S.
Loveday
,
J. Chem. Phys.
121
(
17
),
8430
8434
(
2004
).
70.
T.
Strässle
,
A. M.
Saitta
,
Y. L.
Godec
,
G.
Hamel
,
S.
Klotz
,
J. S.
Loveday
, and
R. J.
Nelmes
,
Phys. Rev. Lett.
96
(
6
),
067801
(
2006
).
71.
A.
Idrissi
,
I.
Vyalov
,
N.
Georgi
, and
M.
Kiselev
,
J. Phys. Chem. B
117
(
40
),
12184
12188
(
2013
).
You do not currently have access to this content.