We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ∼20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.

1.
G. P.
Johari
,
J. Chem. Phys.
58
,
1766
(
1973
).
2.
J.
Haddad
and
M.
Goldstein
,
J. Non-Cryst. Solids
30
,
1
(
1978
).
3.
G. P.
Johari
,
J. Chem. Phys.
77
,
4619
(
1982
).
4.
J.
Perez
,
J.-Y.
Cavaille
, and
L.
David
,
J. Mol. Struct.
479
,
183
(
1999
).
5.
R.
Casalini
and
C. M.
Roland
,
J. Chem. Phys.
131
,
114501
(
2009
).
6.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. Lett.
102
,
035701
(
2009
).
7.
J.
Qiao
,
R.
Casalini
, and
J.-M.
Pelletier
,
J. Chem. Phys.
141
,
104510
(
2014
).
8.
R.
Casalini
and
C. M.
Roland
,
Macromolecules
47
,
4087
(
2014
).
9.
Y.
Hiki
,
H.
Takahashi
, and
Y.
Kogure
,
Solid State Ionics
86-88
,
463
(
1996
).
10.
G.
Tammann
and
E.
Jenckel
,
Z. Anorg. Allg. Chem.
184
,
416
(
1929
).
11.
M.
Goldstein
,
J. Phys. Chem.
77
,
667
(
1973
).
12.
J. E.
Mckinney
and
R.
Simha
,
J. Res. Natl. Bur. Stand., Sect. A
81A
,
283
(
1977
).
13.
A.
Weitz
and
B.
Wunderlich
,
J. Polym. Sci., Polym. Phys. Ed.
12
,
2473
(
1974
).
14.
I. G.
Brown
,
R. E.
Wetton
,
M. J.
Richardson
, and
N. G.
Savill
,
Polymer
19
,
659
(
1978
).
15.
R. M.
Kimmel
and
D. R.
Uhlmann
,
J. Appl. Phys.
41
,
2917
(
1970
);
R. M.
Kimmel
and
D. R.
Uhlmann
,
J. Appl. Phys.
42
,
4917
(
1971
).
16.
W. M.
Prest
and
F. J.
Roberts
, Jr.
,
Ann. N. Y. Acad. Sci.
371
,
67
(
1981
).
17.
H. W.
Bree
,
J.
Heijbour
,
L. C. E.
Struick
, and
A. J. M.
Tak
,
J. Polym. Sci., Polym. Phys. Ed.
12
,
1857
(
1974
).
18.
O.
Andersson
and
G. P.
Johari
,
J. Chem. Phys.
145
,
204506
(
2016
).
19.
K. L.
Ngai
,
Relaxation and Diffusion in Complex Systems
(
Springer
,
New York
,
2011
).
20.
M. R.
Carpenter
,
D. B.
Davies
, and
A. J.
Matheson
,
J. Chem. Phys.
46
,
2451
(
1967
).
21.
M.
Sekula
,
S.
Pawlus
,
S.
Hensel-Bielowka
,
J.
Ziolo
,
M.
Paluch
, and
C. M.
Roland
,
J. Phys. Chem. B
108
,
4997
(
2004
).
22.
N.
Menon
,
S. R.
Nagel
, and
D. C.
Venerus
,
Phys. Rev. Lett.
73
,
963
(
1994
).
23.
B.
Håkansson
,
P.
Andersson
, and
G.
Bäckström
,
Rev. Sci. Instrum.
59
,
2269
(
1988
).
24.
O.
Andersson
and
A.
Inaba
,
Phys. Chem. Chem. Phys.
7
,
1441
(
2005
).
25.
O.
Andersson
,
B.
Sundqvist
, and
G.
Bäckström
,
High Pressure Res.
10
,
599
(
1992
).
26.
N. O.
Birge
,
Phys. Rev. B
34
,
1631
(
1986
).
27.
O.
Andersson
,
Int. J. Thermophys.
18
,
195
(
1997
).
28.

A peak in κ appears because of time-dependence in Cp due to the kinetic unfreezing of structural fluctuations in the glass to liquid transition range, which is not taken into account. This peak is thus superimposed on the real changes in κ due to the temperature change and vitrification. In addition to the experimental time scale set by the transient heating of the hot-wire probe, with an average heating rate of 150 K/min (3.5 K in 1.4 s), there is another time scale determined by the slow heating and cooling rates of the vessel of less than 1 K/min. A cooling rate of 1 K/min in these studies typically leads to vitrification when the α-relaxation time is ∼100 s, which means that the sample vitrifies at near the low-T end of the low-temperature peak. (The relatively slow cooling and heating of the vessel, with a rate of less than 1 K/min, are superimposed on the rapid heating of the probe and do not cause the sample to kinetically freeze or unfreeze during the heat pulse.) The hysteresis in the κ peak between cooling and heating paths (Fig. 1) is partly due to the reversal in the direction of friction-forces on the piston, which causes a larger pressure on heating than on cooling, and partly due to changing temperature gradients in the sample cell. At T below Tg, on the left end of the κ-peak and which is determined by the cooling and heating rates, the hysteresis is partly also intrinsic due to structural freezing and unfreezing. Therefore, the peaks, which are in the 180–240 K T-range in Figs. 1–4, are artificial features due to neglect of the imaginary part of the complex heat capacity in data analysis of the transient hot-wire and hot-strip methods as was discussed in previous studies (Refs. 26 and 27).

29.
N. O.
Birge
and
S. R.
Nagel
,
Phys. Rev. Lett.
54
,
2674
(
1985
).
30.
G. A.
Slack
, in
Solid State Physics
, edited by
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
(
Academic
,
New York
,
1979
), Vol. 34, pp.
1
71
.
31.
P. K.
Dixon
and
S. R.
Nagel
,
Phys. Rev. Lett.
61
341
(
1988
);
[PubMed]
P. K.
Dixon
,
L.
Wu
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
,
Phys. Rev. Lett.
65
,
1108
(
1990
).
[PubMed]
32.
D. W.
Van Krevelen
,
Properties of Polymers
(
Elsevier
,
Amsterdam
,
1972
), p.
233
.
33.
D. G.
Cahill
and
R. O.
Pohl
,
Phys. Rev. B
35
,
4067
(
1987
).
34.
O.
Sandberg
,
P.
Andersson
, and
G.
Bäckström
,
J. Phys. E: Sci. Instrum.
10
,
474
(
1977
).
35.
R. G.
Ross
,
P.
Andersson
,
B.
Sundqvist
, and
G.
Bäckström
,
Rep. Prog. Phys.
47
,
1347
(
1984
).
36.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
67
,
1
(
1932
).
37.
R.
Casalini
,
S. S.
Bair
, and
C. M.
Roland
,
J. Chem. Phys.
145
,
064502
(
2016
).
38.
O.
Andersson
and
A.
Inaba
,
J. Chem. Phys.
122
,
124710
(
2005
).
39.
S. P.
Andersson
, “
Thermophysical properties of amorphous polymers under high pressure
,” Ph.D. thesis,
Umeå University
,
Umeå
,
1998
.
40.
R. L.
Cook
,
H. E.
King
, Jr.
,
C. A.
Herbst
, and
D. R.
Herschbach
,
J. Chem. Phys.
100
,
5178
(
1994
).
41.

The usual increase in κglass refers to a sample heated at the same p as it was formed, as in the case C of Fig. 4, and its structure stabilizes on heating. The effect is small because decrease in volume on stabilization would be small and very slow, the latter is because the glass is at T far below the κpeak temperature, where its structural relaxation time is long.

42.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. E
69
,
062501
(
2004
).
43.
E. R.
Lopez
,
A. S.
Pensado
,
M. J. P.
Comunas
,
A. A. H.
Padua
,
J.
Fernandez
, and
K. R.
Harris
,
J. Chem. Phys.
134
,
144507
(
2011
).
44.
G.
Floudas
,
M.
Paluch
,
A.
Grzybowski
, and
K. L.
Ngai
,
Molecular Dynamics of Glass Forming Systems, Effects of Pressure
(
Springer
,
New York
,
2011
).
45.

For this calculation, we used the dataset measured prior to that shown as plot C in Fig. 4. Because of the weak temperature dependence of κglass, the temperature change from 128 K to 114 K, which occurred during pressurization, caused only a 0.3% decrease of κ. This shows that the change in κ during the pressurization is due to the pressure change alone and the results are therefore practically the same as for an isothermal process at, e.g., 115 K.

46.
G. P.
Johari
and
E.
Whalley
,
J. Chem. Phys.
70
,
2094
(
1979
).
47.
Y. M.
Beltukov
,
V. I.
Kozub
, and
D. A.
Parshin
,
Phys. Rev. B
87
,
134203
(
2013
).
48.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College Publishing
,
Philadelphia
,
1976
).
49.
V.
Lubchenko
and
P. G.
Wolynes
,
J. Chem. Phys.
121
,
2852
(
2004
).
You do not currently have access to this content.