Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon 1H → 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10−6 s up to 1 s. The time dependence of the mean-squared displacement obtained in this time range clearly shows three regimes of power law with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the intramolecular part obtained from the experimental data is not in agreement with the predictions of the tube-reptation model for the regimes of incoherent and coherent reptation.

1.
V. A.
Kargin
and
G. L.
Slonimskii
,
J. Fizhimii (USSR)
23
,
563
(
1949
).
2.
P. J.
Rouse
,
J. Chem. Phys.
21
,
1272
(
1953
).
3.
N.
Fatkullin
,
R.
Kimmich
, and
H. W.
Weber
,
Phys. Rev. E
47
(
6
),
4600
(
1993
).
4.
N.
Fatkullin
and
R.
Kimmich
,
J. Chem. Phys.
101
(
1
),
822
(
1994
).
5.
S. F.
Edwards
,
Proc. Phys. Soc.
92
,
9
(
1967
).
6.
P. G.
de Gennes
,
J. Chem. Phys.
55
,
572
(
1971
).
7.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
1789
(
1978
).
8.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
9.
K. S.
Schweizer
,
J. Chem. Phys.
91
,
5802
(
1989
).
10.
K. S.
Schweizer
,
J. Chem. Phys.
91
,
5822
(
1989
).
11.
K. S.
Schweizer
,
Phys. Scr.
T49A
,
99
(
1993
).
12.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon
,
Oxford
,
1961
).
13.
C. P.
Slichter
,
Principles of Magnetic Resonance
, 3rd ed. (
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1990
).
14.
R.
Kimmich
and
N.
Fatkullin
,
Adv. Polym. Sci.
170
,
1
(
2004
).
15.
R.
Kimmich
,
N.
Fatkullin
,
R.-O.
Seitter
, and
K.
Gille
,
J. Chem. Phys.
108
,
2173
(
1998
).
16.
M.
Kehr
,
N.
Fatkullin
, and
R.
Kimmich
,
J. Chem. Phys.
126
,
094903
(
2007
).
17.
M.
Kehr
,
N.
Fatkullin
, and
R.
Kimmich
,
J. Chem. Phys.
127
,
084911
(
2007
).
18.
R.
Kimmich
and
N.
Fatkullin
,
Prog. Nucl. Magn. Reson. Spectrosc.
101
,
18
(
2017
).
19.
E. A.
Rössler
,
S.
Stapf
, and
N.
Fatkullin
,
Curr. Opin. Colloid Interface Sci.
18
(
3
),
173
(
2013
).
20.
S.
Kariyo
,
A.
Brodin
,
C.
Gainaru
,
A.
Herrmann
,
J.
Hintermeyer
,
H.
Schick
,
V. N.
Novikov
, and
E. A.
Rössler
,
Macromolecules
41
,
5322
(
2008
).
21.
S.
Kariyo
,
A.
Herrmann
,
C.
Gainaru
,
H.
Schick
,
A.
Brodin
,
V. N.
Novikov
, and
E. A.
Rössler
,
Macromolecules
41
,
5313
(
2008
).
22.
A.
Herrmann
,
B.
Kresse
,
J.
Gmeiner
,
A. F.
Privalov
,
D.
Kruk
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
45
,
6516
(
2012
).
23.
M.
Hofmann
,
B.
Kresse
,
A. F.
Privalov
,
L.
Heymann
,
L.
Willner
,
N.
Aksel
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
49
(
20
),
7945
(
2016
).
24.
M.
Hofmann
,
B.
Kresse
,
L.
Heymann
,
A. F.
Privalov
,
L.
Willner
,
N.
Fatkullin
,
N.
Aksel
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
49
(
22
),
8622
(
2016
).
25.
B.
Kresse
,
M.
Hofmann
,
A. F.
Privalov
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
48
(
13
),
4491
(
2015
).
26.
E.
Fischer
,
R.
Kimmich
,
N.
Fatkullin
, and
G.
Yatsenko
,
Phys. Rev. E
62
,
775
(
2000
).
27.
D.
Richter
,
M.
Monkenbusch
,
A.
Arbe
, and
J.
Colmenero
,
Adv. Polym. Sci.
174
,
1
(
2005
).
28.
A.
Wischnewski
,
M.
Monkenbusch
,
L.
Willner
,
D.
Richter
, and
G.
Kali
,
Phys. Rev. Lett.
90
(
5
),
58302
(
2003
).
29.
D.
Richter
,
R.
Butera
,
L. J.
Fetters
,
J. S.
Huang
,
B.
Farago
, and
B.
Ewen
,
Macromolecules
25
(
23
),
6156
(
1992
).
30.
R.
Graf
,
A.
Heuer
, and
H. W.
Spiess
,
Phys. Rev. Lett.
80
,
5738
(
1998
).
31.
F.
Furtado
,
J.
Damron
,
M.-L.
Trutschel
,
C.
Franz
,
K.
Schröter
,
R. C.
Ball
,
K.
Saalwaechter
, and
D.
Panja
,
Macromolecules
47
(
1
),
256
(
2014
).
32.
F.
Vaca Chávez
and
K.
Saalwächter
,
Phys. Rev. Lett.
104
(
19
),
198305
(
2010
).
33.
F.
Vaca Chávez
and
K.
Saalwächter
,
Macromolecules
44
(
6
),
1549
(
2011
).
34.
N.
Fatkullin
,
C.
Mattea
, and
S.
Stapf
,
J. Chem. Phys.
139
,
194905
(
2013
).
35.
N.
Fatkullin
,
A.
Gubaidullin
,
C.
Mattea
, and
S.
Stapf
,
J. Chem. Phys.
137
,
224907
(
2012
).
36.
P. W.
Anderson
and
P. R.
Weiss
,
Rev. Mod. Phys.
25
,
269
(
1953
).
37.
J. P.
Cohen-Addad
and
M.
Domard
,
J. Chem. Phys.
75
(
8
),
4107
(
1981
).
38.
M. G.
Brereton
,
Macromolecules
22
(
9
),
3667
(
1989
).
39.
M. G.
Brereton
,
Macromolecules
23
,
1119
(
1990
).
40.
R.
Kimmich
,
E.
Fischer
,
P.
Callaghan
, and
N.
Fatkullin
,
J. Magn. Reson., Ser. A
117
,
53
(
1995
).
41.
A.
Lozovoi
,
C.
Mattea
,
A.
Herrmann
,
E. A.
Rössler
,
S.
Stapf
, and
N.
Fatkullin
,
J. Chem. Phys.
144
(
24
),
241101
(
2016
).
42.
J. P.
Cohen-Addad
and
R.
Vogin
,
Phys. Rev. Lett.
33
(
16
),
940
(
1974
).
43.
J.
Collignon
,
H.
Sillescu
, and
H. W.
Spiess
,
Colloid Polym. Sci.
259
(
2
),
220
(
1981
).
44.
P. T.
Callaghan
and
E. T.
Samulski
,
Macromolecules
30
(
1
),
113
(
1997
).
45.
R. C.
Ball
,
P. T.
Callaghan
, and
E. T.
Samulski
,
J. Chem. Phys.
106
,
7352
(
1997
).
46.
J. P.
Cohen-Addad
,
Prog. NMR Spectrosc.
25
,
1
(
1993
).
47.
J. T.
Gotro
and
W. W.
Graessley
,
Macromolecules
17
,
2767
(
1984
).
48.
L. J.
Fetters
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
,
Macromolecules
27
(
17
),
4639
(
1994
).
49.
M.
Flämig
,
M.
Becher
,
M.
Hofmann
,
T.
Körber
,
B.
Kresse
,
A. F.
Privalov
,
L.
Willner
,
D.
Kruk
,
F.
Fujara
, and
E. A.
Rössler
,
J. Phys. Chem. B
120
,
7754
(
2016
).
50.
B.
Schmidtke
,
M.
Hofmann
,
A.
Lichtinger
, and
E. A.
Rössler
,
Macromolecules
48
(
9
),
3005
(
2015
).
51.
K.
Halbach
,
Nucl. Instrum. Methods
169
(
1
),
1
(
1980
).
52.
N.
Fatkullin
,
A.
Gubaidullin
, and
S.
Stapf
,
J. Chem. Phys.
132
,
094903
(
2010
).
53.
M.
Mehring
,
Principles of High Resolution NMR in Solids
, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1983
).
You do not currently have access to this content.