We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

1.
Z. H.
Xiong
,
D.
Wu
,
Z.
Valy Vardeny
, and
J.
Shi
,
Nature
427
,
821
(
2004
).
2.
A. R.
Rocha
 et al,
Nat. Mater.
4
,
335
(
2005
).
3.
D.
Waldron
,
P.
Haney
,
B.
Larade
,
A.
MacDonald
, and
H.
Guo
,
Phys. Rev. Lett.
96
,
166804
(
2006
).
4.
T. S.
Santos
,
J. S.
Lee
,
P.
Migdal
,
I. C.
Lekshmi
,
B.
Satpati
, and
J. S.
Moodera
,
Phys. Rev. Lett.
98
,
016601
(
2007
).
5.
J.-W.
Yoo
,
C.-Y.
Chen
,
H. W.
Jang
,
C. W.
Bark
,
V. N.
Prigodin
,
C. B.
Eom
, and
A. J.
Epstein
,
Nat. Mater.
9
,
638
(
2010
).
6.
J. M.
López-Encarnación
,
J. D.
Burton
,
E. Y.
Tsymbal
, and
J. P.
Velev
,
Nano Lett.
11
,
599
(
2011
).
7.
H.
Kondo
and
T.
Ohno
,
Appl. Phys. Lett.
103
,
233115
(
2013
).
8.
C. V.
Dyck
and
M. A.
Ratner
,
Nano Lett.
15
,
1577
(
2015
).
9.
C.-H.
Hsu
,
Y.-H.
Chu
,
C.-I.
Lu
,
P.-J.
Hsu
,
S.-W.
Chen
,
W.-J.
Hsueh
,
C.-C.
Kaun
, and
M.-T.
Lin
,
J. Phys. Chem. C
119
,
3374
(
2015
).
10.
S.
Sanvito
,
Nat. Phys.
6
,
562
(
2010
).
11.
P.
Ruden
,
Nat. Mater.
10
,
8
(
2011
).
12.
B. Q.
Xu
,
X. L.
Li
,
X. Y.
Xiao
,
H.
Sakaguchi
, and
N. J.
Tao
,
Nano Lett.
5
,
1491
(
2005
).
13.
N. J.
Tao
,
Nat. Nanotechnol.
1
,
173
(
2006
).
14.
C. A.
Martin
,
D.
Ding
,
H. S. J.
van der Zant
, and
J. M.
van Ruitenbeek
,
New J. Phys.
10
,
065008
(
2008
).
15.
S. V.
Aradhya
and
L.
Venkataraman
,
Nat. Nanotechnol.
8
,
399
(
2013
).
16.
Y.-H.
Tang
,
V. M. K.
Bagci
,
J.-H.
Chen
, and
C.-C.
Kaun
,
J. Phys. Chem. C
115
,
25105
(
2011
).
17.
I.
Franco
,
G. C.
Solomon
,
G. C.
Schatz
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
133
,
15714
(
2011
).
18.
Y.-H.
Tang
and
C.-J.
Lin
,
J. Phys. Chem. C
120
,
692
(
2016
).
19.
M.
Julliere
,
Phys. Lett. A
54
,
225
(
1975
).
20.
P.
LeClair
,
J. T.
Kohlhepp
,
C. H.
van de Vin
,
H.
Wieldraaijer
,
H. J. M.
Swagten
,
W. J. M.
de Jonge
,
A. H.
Davis
,
J. M.
MacLaren
,
J. S.
Moodera
, and
R.
Jansen
,
Phys. Rev. Lett.
88
,
107201
(
2002
).
21.
J. M.
De Teresa
,
A.
Barthélémy
,
A.
Fert
,
J. P.
Contour
,
F.
Montaigne
, and
P.
Seneor
,
Science
286
,
507
(
1999
).
22.
J. M.
De Teresa
,
A.
Barthélémy
,
A.
Fert
,
J. P.
Contour
,
R.
Lyonnet
,
F.
Montaigne
,
P.
Seneor
, and
A.
Vaurès
,
Phys. Rev. Lett.
82
,
4288
(
1999
).
23.
H.
Dalgleish
and
G.
Kirczenow
,
Phys. Rev. B
72
,
184407
(
2005
).
24.
S.
Mandal
and
R.
Pati
,
ACS Nano
6
,
3580
(
2012
).
25.
K. V.
Raman
 et al,
Nature
493
,
509
(
2013
).
26.
Z.-Y.
Ning
,
J.-S.
Qiao
,
W.
Ji
, and
H.
Guo
,
Front. Phys.
9
,
780
(
2014
).
27.
P.
Giannozzi
 et al,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
28.
J.
Taylor
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
63
,
245407
(
2001
).
29.
D.
Waldron
,
L.
Liu
, and
H.
Guo
,
Nanotechnology
18
,
424026
(
2007
).
30.
S. J.
Luo
,
G. Y.
Guo
, and
A.
Lareg
,
J. Phys. Chem. C
113
,
14615
(
2009
).
31.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
New York
,
1995
).
You do not currently have access to this content.