The present paper introduces a new multi-reference perturbation approach developed at second order, based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation accounts then for the coupling between the static and dynamic correlation effects. With our new definition of zeroth-order energies, these two approaches are strictly size-extensive provided that local orbitals are used, as numerically illustrated here and formally demonstrated in the  Appendix. Also, the present formalism allows for the factorization of all double excitation operators, just as in internally contracted approaches, strongly reducing the computational cost of these two approaches with respect to other determinant-based perturbation theories. The accuracy of these methods has been investigated on ground-state potential curves up to full dissociation limits for a set of six molecules involving single, double, and triple bond breaking together with an excited state calculation. The spectroscopic constants obtained with the present methods are found to be in very good agreement with the full configuration interaction results. As the present formalism does not use any parameter or numerically unstable operation, the curves obtained with the two methods are smooth all along the dissociation path.

1.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
2.
J.
Goldstone
,
Proc. R. Soc. London Ser. A
239
(
1217
),
267
(
1957
).
4.
F.
Coester
and
H.
Kummel
,
Nucl. Phys.
17
,
477
(
1960
).
5.
J.
Cizek
,
J. Chem. Phys.
45
,
4256
(
1966
).
6.
R. J.
Bartlett
and
G.
Purvis
,
Phys. Scr.
21
,
255
(
1980
).
7.
R. J.
Bartlett
,
J. D.
Watts
, and
L.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
8.
R. J.
Bartlett
,
J. D.
Watts
, and
L.
Noga
,
Chem. Phys. Lett.
167
,
609
(
1990
).
9.
B. H.
Brandow
,
Rev. Mod. Phys.
39
,
771
(
1967
).
10.
D.
Hegarty
and
M.
Robb
,
Mol. Phys.
37
,
1445
(
1979
).
11.
Ph.
Durand
and
J. P.
Malrieu
,
Advances in Chemical Physics
(
Wiley
,
New York
,
1987
), Vol. 67, p.
321
.
12.
S.
Evangelisti
,
J. P.
Daudey
, and
J. P.
Malrieu
,
Phys. Rev. A
35
,
4930
(
1987
).
13.
M. R.
Hoffmann
,
D.
Datta
,
S.
Das
,
D.
Mukherjee
,
A.
Szabados
,
Z.
Rolik
, and
P. R.
Surjan
,
J. Chem. Phys.
131
,
204104
(
2009
).
14.
D. I.
Lyakh
,
M.
Musial
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Rev.
112
,
182
(
2012
).
15.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
,
J. Chem. Phys.
58
,
5745
(
1973
).
16.
S.
Evangelisti
,
J. P.
Daudey
, and
J. P.
Malrieu
,
Chem. Phys.
75
,
91
(
1983
).
17.
M.
Caffarel
,
E.
Giner
,
A.
Scemama
, and
A.
Ramírez-Solís
,
J. Chem. Theory Comput.
10
,
5286
5296
(
2014
).
18.
E.
Giner
and
C.
Angeli
,
J. Chem. Phys.
143
,
124305
(
2015
).
19.
A.
Scemama
,
T.
Applencourt
,
E.
Giner
, and
M.
Caffarel
,
J. Chem. Phys.
141
,
244110
(
2014
).
20.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
,
J. Chem. Phys.
142
,
044115
(
2015
).
21.
M.
Caffarel
,
T.
Applencourt
,
E.
Giner
, and
A.
Scemama
,
J. Chem. Phys.
144
,
151103
(
2016
).
22.
E.
Giner
,
R.
Assaraf
, and
J.
Toulouse
,
Mol. Phys.
114
(
7–8
),
910
920
(
2016
).
23.
J. P.
Malrieu
,
P.
Durand
, and
J. P.
Daudey
,
J. Phys. A: Math. Gen.
18
,
809
(
1985
).
24.
H.
Nakano
,
J.
Nakatani
, and
K.
Hirao
,
J. Chem. Phys.
114
,
1133
(
2001
).
25.
B.
Kirtman
,
J. Chem. Phys.
75
,
798
(
1981
).
26.
K.
Andersson
,
P.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
27.
K.
Andersson
,
P.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
(
2
),
1218
(
1992
).
28.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J. P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
29.
C.
Angeli
,
R.
Cimiraglia
, and
J. P.
Malrieu
,
Chem. Phys. Lett.
350
,
297
(
2001
).
30.
C.
Angeli
,
R.
Cimiraglia
, and
J. P.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
31.
K. G.
Dyall
,
J. Chem. Phys.
102
,
4909
(
1995
).
32.
A.
Sokolov
and
G. K.-L.
Chan
,
J. Chem. Phys.
144
,
064102
(
2016
).
33.
J.
Finley
,
P.-A.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
34.
C.
Angeli
,
S.
Borini
,
M.
Cestari
, and
R.
Cimiraglia
,
J. Chem. Phys.
121
(
9
),
4043
4049
(
2004
).
35.
J. L.
Heully
,
J. P.
Malrieu
, and
A.
Zaitsevskii
,
J. Chem. Phys.
105
,
6887
(
1996
).
36.
P.
Ghosh
,
S.
Chattopadhyay
,
D.
Jana
, and
D.
Mukherjee
,
Int. J. Mol. Sci.
3
,
733
(
2002
).
37.
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
Chem. Phys. Lett.
299
,
42
(
1999
).
38.
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
J. Phys. Chem. A
103
,
1822
(
1999
).
39.
A.
Sen
,
S.
Sen
,
P. K.
Samanta
, and
D.
Mukherjee
,
J. Comput. Chem.
36
,
670
688
(
2015
).
40.
S.
Sharma
and
A.
Alavi
,
J. Chem. Phys.
143
,
102815
(
2015
).
41.
S.
Sharma
,
G.
Jeanmairet
, and
A.
Alavi
,
J. Chem. Phys.
144
,
034103
(
2016
).
42.
G.
Jeanmairet
,
S.
Sharma
, and
A.
Alavi
,
J. Chem. Phys.
146
,
044107
(
2017
).
43.
B.
Jeziorski
and
H.
Monkhorst
,
Phys. Rev. A
24
,
1668
(
1981
).
44.
A.
Zaitsevskii
and
J. P.
Malrieu
,
Chem. Phys. Lett.
233
,
597
(
1995
).
45.
A.
Zaitsevskii
and
J. P.
Malrieu
,
Chem. Phys. Lett.
250
,
366
(
1996
).
46.
A.
Zaitsevskii
and
J. P.
Malrieu
,
Theor. Chem. Acc.
96
,
269
(
1997
).
47.
G.
Li Manni
,
D.
Ma
,
F.
Aquilante
,
J.
Olsen
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
9
,
3375
3384
(
2013
).
48.
Z.
Gershgorn
and
I.
Shavitt
,
Int. J. Quantum Chem.
2
,
751
(
1968
).
49.
D. C.
Rawlings
and
E. R.
Davidson
,
Chem. Phys. Lett.
98
,
424
427
(
1983
).
50.
H.
Nakano
,
J. Chem. Phys.
99
,
7983
(
1993
).
51.
S.
Wilson
and
I.
Hubac
,
Brillouin-Wigner Methods for Many-Body Systems
(
Springer Science & Business Media
,
2009
), ISBN: 978-90-481-3373-4.
52.
J.
Miralles
,
O. C.
Castell
,
R.
Caballol
, and
J. P.
Malrieu
,
Chem. Phys.
172
,
33
43
(
1993
).
53.
C.
Daday
,
S.
Smart
,
G.
Booth
,
A.
Alavi
, and
C.
Filippi
,
J. Chem. Theory Comput.
8
,
4441
4451
(
2012
).
54.
A.
Scemama
,
T.
Applencourt
,
Y.
Garniron
,
E.
Giner
,
G.
David
, and
M.
Caffarel
(
2016
). “
Quantum package v1.0
,” Zenodo. , https://github.com/LCPQ/quantum_package.
55.
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic-structure system
,”
J. Comput. Chem.
14
,
1347
1363
(
1993
).
56.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitonak
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
, “
MOLCAS 7: The next generation
,”
J. Comput. Chem.
31
,
224
247
(
2010
).
57.
P. O.
Widmark
,
P. A.
Malmqvist
, and
B.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
58.
F. A.
Evangelista
and
J.
Gauss
,
J. Chem. Phys.
134
(
11
),
114102
(
2011
).
59.
M.
Hanauer
and
A.
Kohn
,
J. Chem. Phys.
134
(
20
),
204111
(
2011
).
60.
M.
Hanauer
and
A.
Kohn
,
J. Chem. Phys.
136
(
20
),
204107
(
2012
).
61.
M.
Hanauer
and
A.
Kohn
,
J. Chem. Phys.
137
(
13
),
131103
(
2012
).
62.
F. A.
Evangelista
,
A. C.
Simmonett
,
H. F.
Schaefer
 III
,
D.
Mukherjee
, and
W. D.
Allen
,
Phys. Chem. Chem. Phys.
11
,
4728
4741
(
2009
).
63.
C.
Angeli
,
J. Comput. Chem.
30
,
1319
1333
(
2009
).
64.
C.
Angeli
,
Int. J. Quantum Chem.
110
(
13
),
2436
2447
(
2010
).
65.
R.
Cimiraglia
,
J. P.
Malrieu
,
M.
Persico
, and
F.
Spiegelmann
,
J. Phys. B: At. Mol. Phys.
18
,
3073
3084
(
1985
).
66.
E.
Giner
,
G.
David
,
A.
Scemama
, and
J. P.
Malrieu
,
J. Chem. Phys.
144
,
064101
(
2016
).

Supplementary Material

You do not currently have access to this content.