We report a systematic study of colloidal diffusion over a substrate with quasicrystalline-patterned holes. Silica spheres of diameter comparable to the hole diameter diffuse over the patterned substrate and experience a gravitational potential U(x, y). Using optical microscopy, we track the particle trajectories and find two distinct states: a trapped state when the particles are inside the holes and a free-diffusion state when they are on the flat surface outside the holes. The potential U(x, y) and dynamic properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-time diffusion coefficient DL, are measured simultaneously. The measured DL is in good agreement with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The experiment demonstrates the applications of this newly constructed potential landscape.

1.
J. W.
Haus
and
K. W.
Kehr
, “
Diffusion in regular and disordered lattices
,”
Phys. Rep.
150
,
263
(
1987
).
2.
J. P.
Bouchaud
and
A.
Georges
, “
Anomalous diffusion in disordered media: Statistical mechanisms models and physical applications
,”
Phys. Rep.
195
,
127
(
1990
).
3.
S.
Havlin
and
D.
Ben-Avraham
, “
Diffusion in disordered media
,”
Adv. Phys.
51
(
1
),
187
(
2002
);
Originally published in,
Adv. Phys.
36
,
695
(
1987
).
4.
S. J.
Harris
,
A.
Timmons
,
D. R.
Baker
, and
C.
Monroe
, “
Direct in situ measurements of Li transport in Li-ion battery negative electrodes
,”
Chem. Phys. Lett.
485
,
265
274
(
2010
).
5.
A.
Kusumi
,
Y.
Umemura
,
N.
Morone
, and
T.
Fujiwara
, “
Paradigm shift of the molecular dynamics concept in the cell membrane: High-speed single-molecule tracking revealed the partitioning of the cell membrane
,” in
Anomalous Transport: Foundations and Applications
, edited by
R.
Klages
,
G.
Radons
, and
I. M.
Sokolov
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2008
), Chap. 19, pp.
545
574
.
6.
K.
Ritchie
,
X. Y.
Shan
,
J.
Kondo
,
K.
Iwasawa
,
T.
Fujiwara
, and
A.
Kusumi
, “
Detection of non-Brownian diffusion in the cell membrane in single molecule tracking
,”
Biophys. J.
88
,
2266
2277
(
2005
).
7.
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapfa
, “
Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
6438
6443
(
2011
).
8.
I.
Golding
and
E. C.
Cox
, “
Physical nature of bacterial cytoplasm
,”
Phys. Rev. Lett.
96
,
098102
(
2006
).
9.
W.
He
,
H.
Song
,
Y.
Su
,
L.
Geng
,
B. J.
Ackerson
,
H. B.
Peng
, and
P.
Tong
, “
Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane
,”
Nat. Commun.
7
,
11701
(
2016
).
10.
F.
Zhang
,
G. M.
Lee
, and
K.
Jacobson
, “
Protein lateral mobility as a reflection of membrane microstructure
,”
BioEssays
15
,
579
(
1993
).
11.
K.
Jacobson
,
E. D.
Sheets
, and
R.
Simson
, “
Revisiting the fluid mosaic model of membranes
,”
Science
268
,
1441
(
1995
).
12.
D. M.
Engelman
, “
Membranes are more mosaic than fluid
,”
Nature
438
,
578
580
(
2005
).
13.
M. L.
Kraft
, “
Plasma membrane organization and function: Moving past lipid rafts
,”
Mol. Biol. Cell
24
,
2765
2768
(
2013
).
14.
E.
Barkai
,
Y.
Garini
, and
R.
Metzler
, “
Strange kinetics of single molecules in living cells
,”
Phys. Today
65
(
8
),
29
(
2012
).
15.
F.
Hofling
and
T.
Franosch
, “
Anomalous transport in the crowded world of biological cells
,”
Rep. Prog. Phys.
76
,
046602
(
2013
).
16.
R. L.
Baldwin
, “
Matching speed and stability
,”
Nature
369
,
183
(
1994
).
17.
R. L.
Baldwin
, “
The nature of protein folding pathways: The classical versus the new view
,”
J. Biomol. NMR
5
,
103
(
1995
).
18.
Y.
Meroz
and
I. M.
Sokolov
, “
A toolbox for determining subdiffusive mechanisms
,”
Phys. Rep.
573
,
1
29
(
2015
).
19.
S.
Lifson
and
J. L.
Jackson
, “
On the self-diffusion of ions in a polyelectrolyte solution
,”
J. Chem. Phys.
36
,
2410
(
1962
).
20.
K. W.
Kehr
,
D.
Richter
, and
R. H.
Swendsen
, “
The influence of impurities on interstitial diffusion
,”
J. Phys. F: Met. Phys.
8
,
433
(
1978
).
21.
P. J. H.
Denteneer
and
M. H.
Ernst
, “
Exact results for diffusion on a disordered chain
,”
J. Phys. C: Solid State Phys.
16
,
L961
(
1983
).
22.
P. J. H.
Denteneer
and
M. H.
Ernst
, “
Diffusion in systems with static disorder
,”
Phys. Rev. B
29
,
1755
(
1984
).
23.
R.
Zwanzig
, “
Non-Markoffian diffusion in a one-dimensional disordered lattice
,”
J. Stat. Phys.
28
,
127
(
1982
).
24.
H.
Scher
and
M.
Lax
, “
Stochastic transport in a disordered solid. I. Theory
,”
Phys. Rev. B
7
,
4491
(
1973
).
25.
A.
Lubelski
,
I. M.
Sokolov
, and
J.
Klafter
, “
Nonergodicity mimics inhomogeneity in single particle tracking
,”
Phys. Rev. Lett.
100
,
250602
(
2008
).
26.
R.
Metzler
and
J.
Klafter
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
(
2000
).
27.
D.
Levine
and
P. J.
Steinhardt
, “
Quasicrystals. I. Definition and structure
,”
Phys. Rev. B
34
,
596
616
(
1986
).
28.
J. E. S.
Socolar
and
P. J.
Steinhardt
, “
Quasicrystals. II. Unit-cell configurations
,”
Phys. Rev. B
34
,
617
647
(
1986
).
29.
M.
Schmiedeberg
,
J.
Roth
, and
H.
Stark
, “
Brownian particles in random and quasicrystalline potentials: How they approach the equilibrium
,”
Eur. Phys. J. E
24
,
367
377
(
2007
).
30.
A. S.
Kraemer
and
D. P.
Sanders
, “
Periodizing quasicrystals: Anomalous diffusion in quasiperiodic systems
,” preprint arXiv: 1206.1103 (
2012
).
31.
F.
Samavat
,
M. J.
Gladys
,
C. J.
Jenks
,
T. A.
Lograsso
,
B. V.
King
, and
D. J.
O’Connor
, “
Surface layer self diffusion in icosahedral Al-Pd-Mn quasicrystals
,”
Surf. Sci.
601
,
5678
5682
(
2007
).
32.
L.
Guidoni
,
B.
Dépret
,
A.
di Stefano
, and
P.
Verkerk
, “
Atomic diffusion in an optical quasicrystal with five-fold symmetry
,”
Phys. Rev. A
60
,
R4233
R4236
(
1999
).
33.
J. E.
Socolar
,
P. J.
Steinhardt
, and
D.
Levine
, “
Quasicrystals with arbitrary orientational symmetry
,”
Phys. Rev. B
32
(
8
),
5547
(
1985
).
34.
X. G.
Ma
,
P. Y.
Lai
, and
P.
Tong
, “
Colloidal diffusion over a periodic energy landscape
,”
Soft Matter
9
,
8826
(
2013
).
35.
X. G.
Ma
,
P. Y.
Lai
,
B. J.
Ackerson
, and
P.
Tong
, “
Colloidal transport and diffusion over a tilted periodic potential: Dynamics of individual particles
,”
Soft Matter
11
,
1182
(
2015
).
36.
J. C.
Crocker
and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
(
1996
).
37.
P.
Hanggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
38.
R. D. L.
Hanes
,
C.
Dalle-Ferrier
,
M.
Schmiedeberg
,
M. C.
Jenkinsa
, and
S. U.
Egelhaaf
, “
Colloids in one dimensional random energy landscapes
,”
Soft Matter
8
,
2714
(
2010
).
39.
F.
Evers
,
C.
Zunke
,
R. D. L.
Hanes
,
J.
Bewerunge
,
I.
Ladadwa
,
A.
Heuer
, and
S. U.
Egelhaaf
, “
Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations
,”
Phys. Rev. E
88
,
022125
(
2013
).
40.
A.
Ghosh
,
V.
Chikkadi
,
P.
Schall
, and
D.
Bonn
, “
Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass
,”
Phys. Rev. Lett.
107
,
188303
(
2011
).
41.
G. L.
Hunter
and
E. R.
Weeks
, “
The physics of the colloidal glass transition
,”
Rep. Prog. Phys.
75
,
066501
(
2012
).
42.
I. Y.
Wong
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
, “
Anomalous diffusion probes microstructure dynamics of entangled F-actin networks
,”
Phys. Rev. Lett.
92
,
178101
(
2004
).
43.

From the structure of the quasi-crystalline substrate as shown in Fig. 2(b), we find the relative abundance of the nearest neighbour trap separation to that of the second nearest neighbour and the third nearest neighbour to be about 1:5:1.9.

You do not currently have access to this content.