X-ray absorption spectroscopy (XAS) yields direct access to the electronic and geometric structure of hybrid inorganic-organic interfaces formed upon adsorption of complex molecules at metal surfaces. The unambiguous interpretation of corresponding spectra is challenged by the intrinsic geometric flexibility of the adsorbates and the chemical interactions with the interface. Density-functional theory (DFT) calculations of the extended adsorbate-substrate system are an established tool to guide peak assignment in X-ray photoelectron spectroscopy of complex interfaces. We extend this to the simulation and interpretation of XAS data in the context of functional organic molecules on metal surfaces using dispersion-corrected DFT calculations within the transition potential approach. For the prototypical case of 2H-porphine adsorbed on Ag(111) and Cu(111) substrates, we follow the two main effects of the molecule/surface interaction onto the X-ray absorption signatures: (1) the substrate-induced chemical shift of the 1s core levels that dominates in physisorbed systems and (2) the hybridization-induced broadening and loss of distinct resonances that dominate in more chemisorbed systems.

1.
J. M.
Gottfried
,
Surf. Sci. Rep.
70
,
259
379
(
2015
).
2.
F.
Tautz
,
Prog. Surf. Sci.
82
,
479
(
2007
).
3.
K.
Seki
,
N.
Hayashi
,
H.
Oji
,
E.
Ito
,
Y.
Ouchi
, and
H.
Ishii
,
Thin Solid Films
393
,
298
(
2001
).
4.
S.
Barlow
and
R.
Raval
,
Surf. Sci. Rep.
50
,
201
(
2003
).
5.
X.-Y.
Zhu
,
Surf. Sci. Rep.
56
,
1
(
2004
).
6.
T.
Schultz
,
R.
Schlesinger
,
J.
Niederhausen
,
F.
Henneberger
,
S.
Sadofev
,
S.
Blumstengel
,
A.
Vollmer
,
F.
Bussolotti
,
J.-P.
Yang
,
S.
Kera
,
K.
Parvez
,
N.
Ueno
,
K.
Müllen
, and
N.
Koch
,
Phys. Rev. B
93
,
125309
(
2016
).
7.
W.
Lu
and
C. M.
Lieber
,
Nat. Mater.
6
,
841
(
2007
).
8.
K.
Morgenstern
,
Prog. Surf. Sci.
86
,
115
(
2011
).
9.
A.
Dodabalapur
,
Solid State Commun.
102
,
259
(
1997
).
10.
H.
Hoppe
and
N. S.
Sariciftci
,
J. Mater. Res.
19
,
1924
(
2004
).
11.
G.
Witte
and
C.
Wöll
,
J. Mater. Res.
19
,
1889
(
2004
).
12.
G.
Hähner
,
Chem. Soc. Rev.
35
,
1244
(
2006
).
13.
S.
Hüfner
,
Photoelectron Spectroscopy
, 3rd ed. (
Springer
,
2003
).
14.
J.
Stöhr
,
NEXAFS Spectroscopy
(
Springer
,
1992
).
15.
L.
Pettersson
,
H.
Ågren
,
Y.
Luo
, and
L.
Triguero
,
Surf. Sci.
408
,
1
20
(
1998
).
16.
C.
Morin
,
D.
Simon
, and
P.
Sautet
,
J. Phys. Chem. B
108
,
5653
(
2004
).
17.
G.
Fronzoni
,
G.
Balducci
,
R. D.
Francesco
,
M.
Romeo
, and
M.
Stener
,
J. Phys. Chem. C
116
,
18910
(
2012
).
18.
A.
Nilsson
,
J.
Hasselström
,
A.
Föhlisch
,
O.
Karis
,
L.
Pettersson
,
M.
Nyberg
, and
L.
Triguero
,
J. Electron Spectrosc. Relat. Phenom.
110–111
,
15
39
(
2000
).
19.
T.
Breuer
,
M.
Klues
, and
G.
Witte
,
J. Electron Spectrosc. Relat. Phenom.
204
,
102
115
(
2015
).
20.
F.
Klappenberger
,
Y.-Q.
Zhang
,
J.
Björk
,
S.
Klyatskaya
,
M.
Ruben
, and
J. V.
Barth
,
Acc. Chem. Res.
48
,
2140
2150
(
2015
).
21.
W.
Auwärter
,
D.
Écija
,
F.
Klappenberger
, and
J. V.
Barth
,
Nat. Chem.
7
,
105
120
(
2015
).
22.
M.
Willenbockel
,
R. J.
Maurer
,
C.
Bronner
,
M.
Schulze
,
B.
Stadtmüller
,
S.
Soubatch
,
P.
Tegeder
,
K.
Reuter
, and
F. S.
Tautz
,
Chem. Commun.
51
,
15324
(
2015
).
23.
C.
Gahl
,
R.
Schmidt
,
D.
Brete
,
S.
Paarmann
, and
M.
Weinelt
,
Surf. Sci.
643
,
183
189
(
2016
).
24.
A.
Nefedov
and
C.
Wöll
,
Surface Science Techniques
(
Springer
,
2013
).
25.
L.
Triguero
,
L. G. M.
Pettersson
, and
H.
Ågren
,
Phys. Rev. B
58
,
8097
(
1998
).
26.
J. C.
Slater
,
Adv. Quantum Chem.
6
,
1
(
1972
).
27.
N.
Schmidt
,
R.
Fink
, and
W.
Hieringer
,
J. Chem. Phys.
133
,
054703
(
2010
).
28.
C.
Kolczewski
,
R.
Püttner
,
O.
Plashkevych
,
H.
Ågren
,
V.
Staemmler
,
M.
Martins
,
G.
Snell
,
A. S.
Schlachter
,
M.
Sant’Anna
,
G.
Kaindl
, and
L. G. M.
Pettersson
,
J. Chem. Phys.
115
,
6426
(
2001
).
29.
Y.
Luo
,
H.
Ågren
,
M.
Keil
,
R.
Friedlein
, and
W. R.
Salaneck
,
Chem. Phys. Lett.
337
,
176
(
2001
).
30.
M.
Klues
,
K.
Hermann
, and
G.
Witte
,
J. Chem. Phys.
140
,
014302
(
2014
).
31.
M.
Klues
,
P.
Jerabek
,
T.
Breuer
,
M.
Oehzelt
,
K.
Hermann
,
R.
Berger
, and
G.
Witte
,
J. Phys. Chem. C
120
,
12693
(
2016
).
32.
I. E.
Brumboiu
,
A.
Anselmo
,
B.
Brena
,
A.
Dzwilewski
,
K.
Svensson
, and
E.
Moons
,
Chem. Phys. Lett.
568
,
130
(
2013
).
33.
I. E.
Brumboiu
,
L.
Ericsson
,
R.
Hansson
,
E.
Moons
,
O.
Eriksson
, and
B.
Brena
,
J. Chem. Phys.
142
,
054306
(
2015
).
34.
K.
Hermann
,
L.
Pettersson
, and DemonDevelopers Group , StoBe software, see http://www.fhi-berlin.mpg.de/KHsoftware/StoBe/.
35.
K.
Diller
,
F.
Klappenberger
,
M.
Marschall
,
K.
Hermann
,
A.
Nefedov
,
C.
Wöll
, and
J. V.
Barth
,
J. Chem. Phys.
136
,
014705
(
2012
).
36.
A.
Baby
,
G.
Fratesi
,
S. R.
Vaidya
,
L. L.
Patera
,
C.
Africh
,
L.
Floreano
, and
G. P.
Brivio
,
J. Phys. Chem. C
119
,
3624
(
2015
).
37.
G.
Balducci
,
M.
Romeo
,
M.
Stener
,
G.
Fronzoni
,
D.
Cvetko
,
A.
Cossaro
,
M. D.
Angela
,
G.
Kladnik
,
L.
Venkataraman
, and
A.
Morgante
,
J. Phys. Chem. C
119
,
1988
(
2015
).
38.
M.-N.
Shariati
,
J.
Lüder
,
I.
Bidermane
,
S.
Ahmadi
,
E.
Göthelid
,
P.
Palmgren
,
B.
Sanyal
,
O.
Eriksson
,
M. N.
Piancastelli
,
B.
Brena
, and
C.
Puglia
,
J. Phys. Chem. C
117
,
7018
(
2013
).
39.
M.
Müller
,
K.
Diller
,
R. J.
Maurer
, and
K.
Reuter
,
J. Chem. Phys.
144
,
024701
(
2016
).
40.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr. - Cryst. Mater.
220
,
567
(
2005
).
41.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
43.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
44.
E.
McNellis
,
J.
Meyer
,
A.
Baghi
, and
K.
Reuter
,
Phys. Rev. B
80
,
035414
(
2009
).
45.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
46.
T.
Mizoguchi
,
I.
Tanaka
,
S.-P.
Gao
, and
C. J.
Pickard
,
J. Phys.: Condens. Matter
21
,
104204
(
2009
).
47.
F.
Bischoff
,
K.
Seufert
,
W.
Auwärter
,
S.
Joshi
,
S.
Vijaraghavan
,
D.
Écija
,
K.
Diller
,
A. C.
Papageorgiou
,
S.
Fischer
,
F.
Allegretti
,
D. A.
Duncan
,
F.
Klappenberger
,
F.
Blobner
,
R.
Han
, and
J. V.
Barth
,
ACS Nano
7
,
3139
3149
(
2013
).
48.
K.
Diller
,
F.
Klappenberger
,
F.
Allegretti
,
A. C.
Papageorgiou
,
S.
Fischer
,
D. A.
Duncan
,
R. J.
Maurer
,
J. A.
Lloyd
,
S. C.
Oh
,
K.
Reuter
, and
J. V.
Barth
,
J. Chem. Phys.
141
,
144703
(
2014
).
49.
K.
Diller
,
F.
Klappenberger
,
F.
Allegretti
,
A. C.
Papageorgiou
,
S.
Fischer
,
A.
Wiengarten
,
S.
Joshi
,
K.
Seufert
,
D.
Ecija
,
W.
Auwärter
, and
J. V.
Barth
,
J. Chem. Phys.
138
,
154710
(
2013
).
50.
T.-C.
Tseng
,
C.
Urban
,
Y.
Wang
,
R.
Otero
,
S. L.
Tait
,
M.
Alcamí
,
D.
Écija
,
M.
Trelka
,
J. M.
Gallego
,
N.
Lin
,
M.
Konuma
,
U.
Starke
,
A.
Nefedov
,
A.
Langner
,
C.
Wöll
,
M.
Ángeles Herranz
,
F.
Martín
,
N.
Martín
,
K.
Kern
, and
R.
Miranda
,
Nat. Chem.
2
,
374
379
(
2010
).
51.

Which does not seem likely for the example presented here, but could play a role for other complex compounds.

52.
O. T.
Hofmann
,
P.
Rinke
,
M.
Scheffler
, and
G.
Heimel
,
ACS Nano
9
,
5391
(
2015
).

Supplementary Material

You do not currently have access to this content.