A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822–7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357–2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.

1.
X.
Sun
and
W. H.
Miller
, “
Mixed semiclassical-classical approaches to the dynamics of complex molecular systems
,”
J. Chem. Phys.
106
,
916
927
(
1997
).
2.
N.
Makri
, “
Forward-backward semiclassical and quantum trajectory methods for time correlation functions
,”
Phys. Chem. Chem. Phys.
32
,
14442
14452
(
2011
).
3.
R.
Kapral
and
G.
Ciccotti
, “
Mixed quantum-classical dynamics
,”
J. Chem. Phys.
110
,
8919
8929
(
1999
).
4.
E.
Rabani
and
D. R.
Reichman
, “
Quantum mode coupling theory: Formulation and applications to normal and supercooled quantum liquids
,”
Annu. Rev. Phys. Chem.
56
,
157
185
(
2005
).
5.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system-bath coupling
,”
J. Chem. Phys.
119
,
12063
(
2003
).
6.
J.
Liu
and
W. H.
Miller
, “
An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. I. Theories
,”
J. Chem. Phys.
134
,
104101
(
2011
).
7.
J.
Liu
and
W. H.
Miller
, “
An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions
,”
J. Chem. Phys.
134
,
104102
(
2011
).
8.
M.
Toda
,
R.
Kubo
, and
N.
Saito
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
Berlin
,
1992
).
9.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties
,”
J. Chem. Phys.
100
,
5093
(
1994
).
10.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties
,”
J. Chem. Phys.
100
,
5106
(
1994
).
11.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics
,”
J. Chem. Phys.
101
,
6157
6167
(
1994
).
12.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics
,”
J. Chem. Phys.
101
,
6168
6183
(
1994
).
13.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids
,”
J. Chem. Phys.
101
,
6184
6192
(
1994
).
14.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
3373
(
2004
).
15.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
 III
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
,
387
413
(
2013
).
16.
T. J. H.
Hele
,
M. J.
Willatt
,
A.
Muolo
, and
S. C.
Althorpe
, “
Boltzmann-conserving classical dynamics in quantum time-correlation functions: Matsubara dynamics
,”
J. Chem. Phys.
142
,
134103
(
2015
).
17.
I.
Georgescu
and
V. A.
Mandelshtam
, “
Molecular dynamics with quantum fluctuations
,”
Phys. Rev. B
82
,
094305
(
2010
).
18.
I.
Georgescu
,
J.
Deckman
,
L. J.
Fredrickson
, and
V. A.
Mandelshtam
, “
Thermal Gaussian molecular dynamics for quantum dynamics simulations of many-body systems: Application to liquid para-hydrogen
,”
J. Chem. Phys.
134
,
174109
(
2011
).
19.
K. K. G.
Smith
,
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
, “
A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems
,”
J. Chem. Phys.
142
,
244112
(
2015
).
20.
N.
Ananth
and
T. F.
Miller
 III
, “
Exact quantum statistics for electronically nonadiabatic systems using continuous path variables
,”
J. Chem. Phys.
133
,
234103
(
2010
).
21.
Q.
Shi
and
E.
Geva
, “
A relationship between semiclassical and centroid correlation functions
,”
J. Chem. Phys.
118
,
8173
(
2003
).
22.
B. J.
Braams
and
D. E.
Manolopoulos
, “
On the short-time limit of ring polymer molecular dynamics
,”
J. Chem. Phys.
125
,
124105
(
2006
).
23.
A.
Pérez
,
M. E.
Tuckerman
, and
M. H.
Müser
, “
A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals
,”
J. Chem. Phys.
130
,
184105
(
2009
).
24.
S.
Jang
,
A. V.
Sinitskiy
, and
G. A.
Voth
, “
Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?
,”
J. Chem. Phys.
140
,
154103
(
2014
).
25.
T. J. H.
Hele
,
M. J.
Willatt
,
A.
Muolo
, and
S. C.
Althorpe
, “
Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics
,”
J. Chem. Phys.
142
,
191101
(
2015
).
26.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals: Emended Edition
(
Courier Dover Publications
,
2012
).
27.
R. P.
Feynman
and
H.
Kleinert
, “
Effective classical partition functions
,”
Phys. Rev. A
34
,
5080
5084
(
1986
).
28.
M. J.
Gillan
, “
Quantum-classical crossover of the transition rate in the damped double well
,”
J. Phys. C: Solid State Phys.
20
,
3621
3641
(
1987
).
29.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
, “
Rigorous formulation of quantum transition state theory and its dynamical corrections
,”
J. Chem. Phys.
91
,
7749
7760
(
1989
).
30.
R.
Hernandez
,
J.
Cao
, and
G. A.
Voth
, “
On the Feynman path centroid density as a phase space distribution in quantum statistical mechanics
,”
J. Chem. Phys.
103
,
5018
5026
(
1995
).
31.
S.
Jang
and
G. A.
Voth
, “
Path integral centroid variables and the formulation of their exact real time dynamics
,”
J. Chem. Phys.
111
,
2357
2370
(
1999
).
32.
S.
Jang
and
G. A.
Voth
, “
A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables
,”
J. Chem. Phys.
111
,
2371
2384
(
1999
).
33.
S.
Jang
and
G. A.
Voth
, “
A relationship between centroid dynamics and path integral quantum transition state theory
,”
J. Chem. Phys.
112
,
8747
8757
(
2000
).
34.
E.
Geva
,
Q.
Shi
, and
G. A.
Voth
, “
Quantum-mechanical reaction rate constants from centroid molecular dynamics simulations
,”
J. Chem. Phys.
115
,
9209
9222
(
2001
).
35.
L.
Hernández de la Peña
and
P.
Kusalik
, “
Quantum effects in light and heavy liquid water: A rigid body centroid molecular dynamics study
,”
J. Chem. Phys.
121
,
5292
6002
(
2004
).
36.
F.
Paesani
,
S. S.
Xantheas
, and
G. A.
Voth
, “
Infrared spectroscopy and hydrogen-bond dynamics of liquid water from centroid molecular dynamics with an ab initio-based force field
,”
J. Phys. Chem. B
113
,
13118
13130
(
2009
).
37.
D. R.
Reichman
,
P.-N.
Roy
,
S.
Jang
, and
G. A.
Voth
, “
A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonlinear operators
,”
J. Chem. Phys.
113
,
919
929
(
2000
).
38.
S.
Jang
, “
Path integral centroid dynamics for general initial conditions: A nonequilibrium projection operator formulation
,”
J. Chem. Phys.
124
,
064107
(
2006
).
39.
P.-N.
Roy
and
G. A.
Voth
, “
On the Feynman path centroid density for Bose-Einstein and Fermi-Dirac statistics
,”
J. Chem. Phys.
110
,
3647
3652
(
1999
).
40.
P.-N.
Roy
,
S.
Jang
, and
G. A.
Voth
, “
Feynman path centroid dynamics for Fermi–Dirac statistics
,”
J. Chem. Phys.
111
,
5303
5305
(
1999
).
41.
N. V.
Blinov
,
P.-N.
Roy
, and
G. A.
Voth
, “
Path integral formulation of centroid dynamics for systems obeying Bose–Einstein statistics
,”
J. Chem. Phys.
115
,
4484
4495
(
2001
).
42.
N.
Blinov
and
P.-N.
Roy
, “
Operator formulation of centroid dynamics for Bose–Einstein and Fermi–Dirac statistics
,”
J. Chem. Phys.
115
,
7822
7831
(
2001
).
43.
N.
Blinov
and
P.-N.
Roy
, “
An effective centroid Hamiltonian and its associated centroid dynamics for indistinguishable particles in a harmonic trap
,”
J. Chem. Phys.
116
,
4808
4818
(
2002
).
44.
P.
Moffatt
,
N.
Blinov
, and
P.-N.
Roy
, “
On the calculation of single-particle time correlation functions from Bose–Einstein centroid dynamics
,”
J. Chem. Phys.
120
,
4614
4618
(
2004
).
45.
Y.
Huh
and
P.-N.
Roy
, “
Inclusion of inversion symmetry in centroid molecular dynamics: A possible avenue to recover quantum coherence
,”
J. Chem. Phys.
125
,
164103
(
2006
).
46.
L.
Hernández de la Peña
, “
On the zero temperature limit of the Kubo-transformed quantum time correlation function
,”
Mol. Phys.
112
,
929
937
(
2014
).
47.
K.
Fujii
, “
Quantum damped harmonic oscillator
,” preprint arXiv:1209.1437 (
2012
).
48.
C.
Sanderson
 et al., Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments,
NICTA
,
2010
.
49.
D. H.
Bailey
and
P. N.
Swarztrauber
, “
A fast method for the numerical evaluation of continuous Fourier and Laplace transforms
,”
SIAM J. Sci. Comput.
15
,
1105
1110
(
1994
).
50.
A.
Sarsa
,
K. E.
Schmidt
, and
W. R.
Magro
, “
A path integral ground state method
,”
J. Chem. Phys.
113
,
1366
1371
(
2000
).
51.
R.
Hernandez
and
G. A.
Voth
, “
Quantum time correlation functions and classical coherence
,”
Chem. Phys.
233
,
243
255
(
1998
).
52.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Chem. Phys. A
105
,
2942
2955
(
2001
).
53.
E. J.
Heller
, “
Wigner phase space method: Analysis for semiclassical applications
,”
J. Chem. Phys.
65
,
1289
1298
(
1976
).
54.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
, “
Practical evaluation of condensed phase quantum correlation functions: A Feynman-Kleinert variational linearized path integral method
,”
J. Chem. Phys.
119
,
12179
(
2003
).
55.
J. A.
Poulsen
,
H.
Li
, and
G.
Nyman
, “
Classical Wigner method with an effective quantum force: Application to reaction rates
,”
J. Chem. Phys.
131
,
024117
(
2009
).
56.
M.
Schmidt
,
S.
Constable
,
C.
Ing
, and
P. N.
Roy
, “
Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues
,”
J. Chem. Phys.
140
,
234101
(
2014
).

Supplementary Material

You do not currently have access to this content.