The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm−1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm−1 is the most accurate computation that exists today on such systems.

1.
J.
Bowman
,
K.
Christoffel
, and
F.
Tobin
,
J. Phys. Chem.
83
,
905
(
1979
).
2.
S.
Carter
and
N.
Handy
,
Comput. Phys. Rep.
5
,
117
(
1986
).
3.
D.
Bégué
,
N.
Gohaud
,
C.
Pouchan
,
P.
Cassam-Chenai
, and
J.
Liévin
,
J. Chem. Phys.
127
,
164115
(
2007
).
4.
J.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
5.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
6.
A.
Viel
and
C.
Leforestier
,
J. Chem. Phys.
112
,
1212
(
2000
).
7.
H.
Romanowski
,
J. M.
Bowman
, and
L. B.
Harding
,
J. Chem. Phys.
82
,
4155
(
1985
).
8.
P.
Cassam-Chenaï
and
J.
Liévin
,
Int. J. Quantum Chem.
93
,
245
(
2003
).
9.
C.
Pouchan
and
K.
Zaki
,
J. Chem. Phys.
107
,
342
(
1997
).
10.
I.
Baraille
,
C.
Larrieu
,
A.
Dargelos
, and
M.
Chaillet
,
Chem. Phys.
273
,
91
(
2001
).
11.
G.
Rauhut
,
J. Chem. Phys.
127
,
184109
(
2007
).
12.
M.
Neff
and
G.
Rauhut
,
J. Chem. Phys.
131
,
124129
(
2009
).
13.
J.
Cooper
and
T.
Carrington
,
J. Chem. Phys.
130
,
214110
(
2009
).
14.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
134
,
054126
(
2011
).
15.
G.
Avila
and
T.
Carrington
,
J. Chem. Phys.
137
,
174108
(
2012
).
16.
G.
Avila
and
T.
Carrington
,
Chem. Phys.
482
,
3
(
2016
).
17.
J.
Brown
and
T.
Carrington
,
J. Chem. Phys.
145
,
144104
(
2016
).
18.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
19.
A.
Shimshovitz
,
Z.
Bačić
, and
D. J.
Tannor
,
J. Chem. Phys.
141
,
234106
(
2014
).
20.
T.
Halverson
and
B.
Poirier
,
Chem. Phys. Lett.
624
,
37
(
2015
).
21.
T.
Halverson
and
B.
Poirier
,
J. Phys. Chem. A
119
,
12417
(
2015
).
22.
U.
Manthe
and
H.
Kppel
,
J. Chem. Phys.
93
,
345
(
1990
).
23.
M. J.
Bramley
,
J. W.
Tromp
,
T.
Carrington
, Jr.
, and
G. C.
Corey
,
J. Chem. Phys.
100
,
6175
(
1994
).
24.
L.
Halonen
,
D. W.
Noid
, and
M.
Child
,
J. Chem. Phys.
78
,
2803
(
1983
).
25.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
26.
X.-G.
Wang
and
T.
Carrington
,
J. Phys. Chem. A
105
,
2575
(
2001
).
27.
H.-G.
Yu
,
J. Chem. Phys.
117
,
2030
(
2002
).
28.
B.
Poirier
,
J. Theor. Comput. Chem.
02
,
65
(
2003
).
29.
R.
Dawes
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
122
,
134101
(
2005
).
30.
R.
Dawes
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
124
,
054102
(
2006
).
31.
Y.
Scribano
and
D. M.
Benoit
,
Chem. Phys. Lett.
458
,
384
(
2008
).
32.
J.
Chang
and
R. E.
Wyatt
,
J. Chem. Phys.
85
,
1840
(
1986
).
33.
B.
Hartke
,
Phys. Chem. Chem. Phys.
8
,
3627
(
2006
).
34.
J.
Sielk
,
H. F.
von Horsten
,
F.
Kruger
,
R.
Schneider
, and
B.
Hartke
,
Phys. Chem. Chem. Phys.
11
,
463
(
2009
).
35.
S.
Machnes
,
E.
Assmat
,
H. R.
Larsson
, and
D. J.
Tannor
,
J. Phys. Chem. A
120
,
3296
(
2016
).
36.
J.
Brown
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
143
,
044104
(
2015
).
37.
R.
Garnier
,
M.
Odunlami
,
V.
Le Bris
,
D.
Bégué
,
I.
Baraille
, and
O.
Coulaud
,
J. Chem. Phys.
144
,
204123
(
2016
).
38.
39.
M. E.
Kellman
and
V.
Tyng
,
Acc. Chem. Res.
40
,
243
(
2007
).
40.
S.
Carter
,
J. M.
Bowman
, and
A. R.
Sharma
,
AIP Conf. Proc.
1504
,
465
(
2012
).
41.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
139
,
134114
(
2013
).
42.
X.
Wang
,
S.
Carter
, and
J. M.
Bowman
,
J. Phys. Chem. A
119
,
11632
(
2015
).
43.
N. C.
Handy
and
S.
Carter
,
Mol. Phys.
102
,
2201
(
2004
).
44.
F.
Bauer
and
C.
Fike
,
Numerische Math.
2
,
137
(
1960
).
45.
R. A.
Horn
and
C. R.
Johnson
,
Topics in Matrix Analysis
(
Cambridge University Press
,
Cambridge, New York, Melbourne
,
1994
).
46.
R.
Lehoucq
,
D.
Sorensen
, and
C.
Yang
,
ARPACK Users’ Guide
(
SIAM
,
1998
).
47.
D.
Begue
,
P.
Carbonniere
, and
C.
Pouchan
,
J. Phys. Chem. A
109
,
4611
(
2005
).
48.
R. C.
Lord
and
B.
Nolin
,
J. Chem. Phys.
24
,
656
(
1956
).
49.
C.
Puzzarini
,
M.
Biczysko
,
J.
Bloino
, and
V.
Barone
,
Astrophys. J.
785
,
107
(
2014
).
50.
P. S.
Thomas
and
T.
Carrington
, Jr.
,
J. Phys. Chem. A
119
,
13074
(
2015
).
51.
A.
Leclerc
and
T.
Carrington
,
J. Chem. Phys.
140
,
174111
(
2014
).
52.
R. M.
Wilcox
,
J. Chem. Phys.
45
,
3312
(
1966
).

Supplementary Material

You do not currently have access to this content.