Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick’s first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

1.
B. L.
De Groot
and
H.
Grubmuller
,
Science
294
,
2353
(
2001
).
2.
S.-J.
Marrink
and
H. J. C.
Berendsen
,
J. Phys. Chem.
98
,
4155
(
1994
).
3.
K.
Shinoda
,
W.
Shinoda
, and
M.
Mikami
,
J. Comput. Chem.
29
,
1912
(
2008
).
4.
W.
Shinoda
,
M.
Mikami
,
T.
Baba
, and
M.
Hato
,
J. Phys. Chem. B
108
,
9346
(
2004
).
5.
N. A.
Krylov
,
V. M.
Pentkovsky
, and
R. G.
Efremov
,
ACS Nano
7
,
9428
(
2013
).
6.
H.
Saito
and
W.
Shinoda
,
J. Phys. Chem. B
115
,
15241
(
2011
).
7.
B.
Qiao
and
M.
Olvera de la Cruz
,
J. Phys. Chem. Lett.
4
,
3233
(
2013
).
8.
M.
Zhernenkov
,
D.
Bolmatov
,
D.
Soloviov
,
K.
Zhernenkov
,
B. P.
Toperverg
,
A.
Cunsolo
,
A.
Bosak
, and
Y. Q.
Cai
,
Nat. Commun.
7
,
11575
(
2016
).
9.
W. F.
Li
,
Y. M.
Yang
,
J. K.
Weber
,
G.
Zhang
, and
R. H.
Zhou
,
ACS Nano
10
,
1829
(
2016
).
10.
P.
Kral
and
B. Y.
Wang
,
Chem. Rev.
113
,
3372
(
2013
).
11.
L.
Vukovic
,
E.
Vokac
, and
P.
Kral
,
J. Phys. Chem. Lett.
5
,
2131
(
2014
).
12.
J. Y.
Li
,
X. J.
Gong
,
H. J.
Lu
,
D.
Li
,
H. P.
Fang
, and
R. H.
Zhou
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
3687
(
2007
).
13.
I.
Vlassiouk
,
S.
Smirnov
, and
Z. S.
Siwy
,
Nano Lett.
8
,
1978
(
2008
).
14.
E.
Secchi
,
S.
Marbach
,
A.
Niguès
,
D.
Stein
,
A.
Siria
, and
L.
Bocquet
,
Nature
537
,
210
(
2016
).
15.
R. Z.
Wan
,
J. Y.
Li
,
H. J.
Lu
, and
H. P.
Fang
,
J. Am. Chem. Soc.
127
,
7166
(
2005
).
16.
M. R.
Powell
,
L.
Cleary
,
M.
Davenport
,
K. J.
Shea
, and
Z. S.
Siwy
,
Nat. Nanotechnol.
6
,
798
(
2011
).
17.
T. B.
Sisan
and
S.
Lichter
,
Phys. Rev. Lett.
112
,
044501
(
2014
).
18.
E.
Awoonor-Williams
and
C. N.
Rowley
,
Biochim. Biophys. Acta, Biomembr.
1858
,
1672
(
2016
).
19.
J. Y.
Su
,
Z. W.
Yao
, and
M.
Olvera de la Cruz
,
ACS Nano
10
,
2287
(
2016
).
20.
M.
Kumar
,
M.
Grzelakowski
,
J.
Zilles
,
M.
Clark
, and
W.
Meier
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
20719
(
2007
).
21.
A.
Taubert
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
20643
(
2007
).
22.
C. G.
Palivan
,
R.
Goers
,
A.
Najer
,
X.
Zhang
,
A.
Cara
, and
W.
Meier
,
Chem. Soc. Rev.
45
,
377
(
2016
).
23.
M.
Barboiu
and
A.
Gilles
,
Acc. Chem. Res.
46
,
2814
(
2013
).
24.
X. B.
Hu
,
Z. X.
Chen
,
G. F.
Tang
,
J. L.
Hou
, and
Z.-T.
Li
,
J. Am. Chem. Soc.
134
,
8384
(
2012
).
25.
M.
Przybyło
,
D.
Drabik
,
M.
Łukawski
, and
M.
Langner
,
J. Phys. Chem. B
118
,
11470
(
2014
).
26.
C. Y.
Leung
,
L. C.
Palmer
,
B. F.
Qiao
,
S.
Kewalramani
,
R.
Sknepnek
,
C. J.
Newcomb
,
M. A.
Greenfield
,
G.
Vernizzi
,
S. I.
Stupp
,
M. J.
Bedzyk
, and
M.
Olvera de la Cruz
,
ACS Nano
6
,
10901
(
2012
).
27.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
28.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S. J.
Marrink
,
J. Chem. Theory Comput.
4
,
819
(
2008
).
29.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
30.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
31.
H. L.
Wang
,
T. S.
Chung
,
Y. W.
Tong
,
K.
Jeyaseelan
,
A.
Armugam
,
Z. C.
Chen
,
M. H.
Hong
, and
W.
Meier
,
Small
8
,
1969
(
2012
).
32.
B. F.
Qiao
and
M.
Olvera de la Cruz
,
J. Phys. Chem. B
117
,
5073
(
2013
).
33.
P. J.
Milianta
,
M.
Muzzio
,
J.
Denver
,
G.
Cawley
, and
S.
Lee
,
Langmuir
31
,
12187
(
2015
).
34.
R. S.
Prabhakar
,
R.
Raharjo
,
L. G.
Toy
,
H.
Lin
, and
B. D.
Freeman
,
Ind. Eng. Chem. Res.
44
,
1547
(
2005
).
35.
R.
Kausik
and
S.
Han
,
J. Am. Chem. Soc.
131
,
18254
(
2009
).
36.
T.
Miura
,
H.
Oosawa
,
M.
Sakai
,
Y.
Syundou
,
T.
Ban
, and
A.
Shioi
,
Langmuir
26
,
1610
(
2010
).
37.
A.
Kodama
,
Y.
Sakuma
,
M.
Imai
,
Y.
Oya
,
T.
Kawakatsu
,
N.
Puffbc
, and
M. I.
Angelova
,
Soft Matter
12
,
2877
(
2016
).
38.
D. A.
Wilson
,
R. J. M.
Nolte
, and
J. C. M.
van Hest
,
Nat. Chem.
4
,
268
(
2012
).
39.
R.
Golestanian
,
Phys. Rev. Lett.
102
,
188305
(
2009
).
40.
S.
Gupta
,
K. K.
Sreeja
, and
S.
Thakur
,
Phys. Rev. E
92
,
042703
(
2015
).
41.
T.
Sakai
,
R.
Ikoshi
,
N.
Toshida
, and
M.
Kagaya
,
J. Phys. Chem. B
117
,
5081
(
2013
).
42.
M.
Roché
,
Z.
Li
,
I. M.
Griffiths
,
S.
L Roux
,
I.
Cantat
,
A.
Saint-Jalmes
, and
H. A.
Stone
,
Phys. Rev. Lett.
112
,
208302
(
2014
).

Supplementary Material

You do not currently have access to this content.