A method is developed for generating pseudopotentials for use in correlated-electron calculations. The paradigms of shape and energy consistency are combined and defined in terms of correlated-electron wave-functions. The resulting energy consistent correlated electron pseudopotentials (eCEPPs) are constructed for H, Li–F, Sc–Fe, and Cu. Their accuracy is quantified by comparing the relaxed molecular geometries and dissociation energies which they provide with all electron results, with all quantities evaluated using coupled cluster singles, doubles, and triples calculations. Errors inherent in the pseudopotentials are also compared with those arising from a number of approximations commonly used with pseudopotentials. The eCEPPs provide a significant improvement in optimised geometries and dissociation energies for small molecules, with errors for the latter being an order-of-magnitude smaller than for Hartree-Fock-based pseudopotentials available in the literature. Gaussian basis sets are optimised for use with these pseudopotentials.

1.
M.
Dolg
and
X.
Cao
,
Chem. Rev.
112
,
403
(
2012
).
2.
V.
Milman
,
B.
Winkler
,
J. A.
White
,
C. J.
Pickard
,
M. C.
Payne
,
E. V.
Akhmatskaya
, and
R. H.
Nobes
,
Int. J. Quantum Chem.
77
,
895
(
2000
).
3.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge University Press
,
Cambridge, UK
,
2009
).
4.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
5.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
6.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
,
J. Phys.: Condens. Matter
22
,
023201
(
2010
).
7.
B. M.
Austin
,
D. Yu.
Zubarev
, and
W. A.
Lester
, Jr.
,
Chem. Rev.
112
,
263
(
2012
).
8.
D. M.
Ceperley
,
J. Stat. Phys.
43
,
815
(
1986
).
9.
A.
Ma
,
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
,
Phys. Rev. E
71
,
066704
(
2005
).
10.
J.
Mitroy
,
M. S.
Safronova
, and
C. W.
Clark
,
J. Phys. B: At., Mol. Opt. Phys.
43
,
202001
(
2010
).
11.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
139
,
014101
(
2013
).
12.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
142
,
064110
(
2015
).
13.
D. R.
Hamann
,
M.
Schlüter
, and
C.
Chiang
,
Phys. Rev. Lett.
43
,
1494
(
1979
).
14.
P. H.
Acioli
and
D. M.
Ceperley
,
J. Chem. Phys.
100
,
8169
(
1994
).
15.
E. R.
Davidson
,
Rev. Mod. Phys.
44
,
451
(
1972
).
16.
E. L.
Shirley
and
R. M.
Martin
,
Phys. Rev. B
47
,
15413
(
1993
).
17.
W.
Müller
,
J.
Flesch
, and
W.
Meyer
,
J. Chem. Phys.
80
,
3297
(
1984
);
W.
Müller
and
W.
Meyer
,
J. Chem. Phys.
80
,
3311
(
1984
).
18.
E. L.
Shirley
,
D. C.
Allan
,
R. M.
Martin
, and
J. D.
Joannopoulos
,
Phys. Rev. B
40
,
3652
(
1989
).
19.
S. H.
Patil
,
J. Chem. Phys.
83
,
5764
(
1985
).
20.
C.
Froese Fischer
,
T.
Brage
, and
P.
Jönsson
,
Computational Atomic Structure: An MCHF Approach
(
IOP Publishing Ltd.
,
1997
).
21.
C.
Froese Fischer
,
G.
Tachiev
,
G.
Gaigalas
, and
M.
Godefroid
,
Comput. Phys. Commun.
176
,
559
(
2007
);
A.
Borgoo
,
O.
Scharf
,
G.
Gaigalas
, and
M.
Godefroid
,
Comput. Phys. Commun.
181
,
426
(
2010
).
22.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schtz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
);
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
23.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. K.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
);
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
24.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
25.
D.
Feller
,
K. A.
Peterson
, and
J.
Grant Hill
,
J. Chem. Phys.
133
,
184102
(
2010
).
26.
C. T.
Kelley
,
Iterative Methods for Optimization
(
Society for Industrial and Applied Mathematics
,
1999
).
27.
J. R.
Trail
and
R. J.
Needs
,
J. Chem. Phys.
122
,
174109
(
2005
).
28.
See http://www.tcm.phy.cam.ac.uk/∼mdt26/casino2_pseudopotentials.html for the full set of TNDF pseudopotentials, including those generated with medium sized cores.
29.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
126
,
234105
(
2007
);
[PubMed]
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
129
,
164115
(
2008
).
[PubMed]
30.
See http://www.burkatzki.com/pseudos/index.2.html for the full set of BFD pseudopotentials and basis sets.
31.
L. F.
Pacios
and
P. G.
Calzada
,
Int. J. Quantum Chem.
34
,
267
(
1988
).
32.
J. F.
Harrison
,
Chem. Rev.
100
,
679
(
2000
).
33.
J. A.
Pople
,
M.
Head-Gorden
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
,
J. Chem. Phys.
90
,
5622
(
1989
).
34.
T.
Jones
and
T. A.
Egerton
,
Titanium Compounds, Inorganic. Kirk-Othmer Encyclopedia of Chemical Technology
(
John Wiley & Sons, Inc.
,
2012
).
35.
J. R.
Trail
,
B.
Monserrat
,
P. L.
Ríos
,
R.
Maezono
, and
R. J.
Needs
,
Phys. Rev. B
95
,
121108
(
2017
).
36.
E.
Miliordos
and
A.
Mavridis
,
J. Phys. Chem. A
111
,
1953
(
2007
);
[PubMed]
E.
Miliordos
and
A.
Mavridis
,
J. Phys. Chem. A
114
,
8536
(
2010
);
[PubMed]
C. N.
Sakellaris
,
E.
Miliordos
, and
A.
Mavridisa
,
J. Chem. Phys.
134
,
234308
(
2011
).
[PubMed]
37.
Y.
Pan
,
Z.
Luo
,
Y.-C.
Chang
,
K.-C.
Lau
, and
C. Y.
Ng
,
J. Phys. Chem. A
121
,
669
(
2017
).
38.
B.
Chan
,
A.
Karton
,
K.
Raghavachari
, and
L.
Radom
,
J. Chem. Theory Comput.
8
,
3159
(
2012
).
39.
L.
Sing
,
M.
Liu
,
W.
Wu
,
Q.
Zhang
, and
Y.
Mo
,
J. Chem. Theory Comput.
1
,
394
(
2005
).
40.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
126
,
114105
(
2007
).
41.
W.
Jiang
,
W. J.
DeYonker
, and
A. K.
Wilson
,
J. Chem. Theory Comput.
8
,
460
(
2012
).
42.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
44.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
), http://www.quantum-espresso.org.
45.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
46.
X.
Gonze
,
R.
Stumpf
, and
M.
Scheffler
,
Phys. Rev. B
44
,
8503
(
1991
).
47.
N. D.
Drummond
,
J. R.
Trail
, and
R. J.
Needs
,
Phys. Rev. B
94
,
165170
(
2016
).
48.
J.
Xu
,
M. J.
Deible
,
K. A.
Peterson
, and
K. D.
Jordan
,
J. Chem. Theory Comput.
9
,
2170
(
2013
).

Supplementary Material

You do not currently have access to this content.