Alkylsilane self-assembled monolayers (SAMs) are often used as model substrates for their ease of preparation and hydrophobic properties. We have observed that these atomically smooth monolayers also provide a slip boundary condition for dewetting films composed of unentangled polymers. This slip length, an indirect measure of the friction between a given liquid and different solids, is switchable and can be increased [R. Fetzer et al., Phys. Rev. Lett. 95, 127801 (2005); O. Bäumchen et al., J. Phys.: Condens. Matter 24, 325102 (2012)] if the alkyl chain length is changed from 18 to 12 backbone carbons, for example. Typically, this change in boundary condition is affected in a quantized way, using one or the other alkyl chain length, thus obtaining one or the other slip length. Here, we present results in which this SAM structure is changed in a continuous way. We prepare bidisperse mixed SAMs of alkyl silanes, with the composition as a control parameter. We find that all the mixed SAMs investigated show an enhanced slip boundary condition as compared to the single-component SAMs. The slip boundary condition is accessed using optical and atomic force microscopy, and we describe these observations in the context of X-ray reflectivity measurements. The slip length, varying over nearly two orders of magnitude, of identical polymer melts on chemically similar SAMs is found to correlate with the density of exposed alkyl chains. Our results demonstrate the importance of a well characterized solid/liquid pair, down to the angstrom level, when discussing the friction between a liquid and a solid.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1986
).
3.
G. R.
Strobl
,
The Physics of Polymers: Concepts for Understanding Their Structures and Behavior
(
Springer
,
1996
).
4.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
2003
).
5.
A.
Silberberg
, “
Distribution of conformations and chain ends near the surface of a melt of linear flexible macromolecules
,”
J. Colloid Interface Sci.
90
,
86
(
1982
).
6.
H. R.
Brown
and
T. P.
Russell
, “
Entanglements at polymer surfaces and interfaces
,”
Macromolecules
29
,
798
(
1996
).
7.
L.
Si
,
M. V.
Massa
,
K.
Dalnoki-Veress
,
H. R.
Brown
, and
R. A. L.
Jones
, “
Chain entanglement in thin freestanding polymer films
,”
Phys. Rev. Lett.
94
,
127801
(
2005
).
8.
J. D.
McGraw
,
P. D.
Fowler
,
M. L.
Ferrari
, and
K.
Dalnoki-Veress
, “
Relaxation of non-equilibrium entanglement networks in thin polymer films
,”
Eur. Phys. J. E
36
,
7
(
2013
).
9.
A.
Hariharan
,
S. K.
Kumar
,
M. H.
Rafailovich
,
J.
Sokolov
,
X.
Zheng
,
D. H.
Duong
,
S. A.
Schwarz
, and
T. P.
Russell
, “
The effect of finite film thickness on the surface segregation in symmetrical binary polymer mixtures
,”
J. Chem. Phys.
99
,
656
(
1993
).
10.
J. S.
Lee
,
N.-H.
Lee
,
S.
Peri
,
M. D.
Foster
,
C. F.
Majkrzak
,
R.
Hu
, and
D. T.
Wu
, “
Surface segregation driven by molecular architecture asymmetry in polymer blends
,”
Phys. Rev. Lett.
113
,
225702
(
2014
).
11.
R.
Seemann
,
S.
Herminghaus
, and
K.
Jacobs
, “
Dewetting patterns and molecular forces: A reconciliation
,”
Phys. Rev. Lett.
86
,
5534
(
2001
).
12.
M.
Lessel
,
P.
Loskill
,
F.
Hausen
,
N. N.
Gosvami
,
R.
Bennewitz
, and
K.
Jacobs
, “
Impact of van der Waals interactions on single asperity friction
,”
Phys. Rev. Lett.
111
,
035502
(
2013
).
13.
D. R.
Barbero
and
U.
Steiner
, “
Nonequilibrium polymer rheology in spin-cast films
,”
Phys. Rev. Lett.
102
,
248303
(
2009
).
14.
A.
Raegen
,
M.
Chowdhury
,
C.
Calers
,
A.
Schmatulla
,
U.
Steiner
, and
G.
Reiter
, “
Aging of thin polymer films cast from a near-theta solvent
,”
Phys. Rev. Lett.
105
,
227801
(
2010
).
15.
A.
Clough
,
M.
Chowdhury
,
K.
Jahanshahi
,
G.
Reiter
, and
O. K. C.
Tsui
, “
Swelling with a near-θ solvent as a means to modify the properties of polymer thin films
,”
Macromolecules
45
,
6196
(
2012
).
16.
K.
Dalnoki-Veress
,
J. A.
Forrest
,
C.
Murray
,
C.
Gigault
, and
J. R.
Dutcher
, “
Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films
,”
Phys. Rev. E
63
,
031801
(
2001
).
17.
M.
Alcoutlabi
and
G. B.
McKenna
, “
Effects of confinement on material behaviour at the nanometre size scale
,”
J. Phys.: Condens. Matter
17
,
R461
(
2005
).
18.
K.
Paeng
,
S. F.
Swallen
, and
M. D.
Ediger
, “
Direct measurement of molecular motion in freestanding polystyrene thin films
,”
J. Am. Chem. Soc.
133
,
8444
(
2011
).
19.
O.
Bäumchen
,
J. D.
McGraw
,
J. A.
Forrest
, and
K.
Dalnoki-Veress
, “
Reduced glass transition temperatures in thin polymer films: Surface effect or artifact?
,”
Phys. Rev. Lett.
109
,
055701
(
2012
).
20.
T.
Salez
,
J.
Salez
,
K.
Dalnoki-Veress
,
E.
Raphaël
, and
J. A.
Forrest
, “
Cooperative strings and glassy interfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
8227
(
2015
).
21.
H.
Bodiguel
and
C.
Fretigny
, “
Reduced viscosity in thin polymer films
,”
Phys. Rev. Lett.
97
,
266105
(
2006
).
22.
K.
Shin
,
S.
Obukhov
,
J.-T.
Chen
,
J.
Huh
,
Y.
Hwang
,
S.
Mok
,
P.
Dobriyal
,
P.
Thiyagarajan
, and
T. P.
Russell
, “
Enhanced mobility of confined polymers
,”
Nat. Mater.
6
,
961
(
2007
).
23.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
24.
P. G.
de Gennes
,
Soft Interfaces: The 1994 Dirac Memorial Lecture
(
Cambridge University Press
,
1997
).
25.
G.
Reiter
and
R.
Khanna
, “
Real-time determination of the slippage length in autophobic polymer dewetting
,”
Phys. Rev. Lett.
85
,
2753
(
2000
).
26.
L.
Leger
, “
Friction mechanisms and interfacial slip at fluid—Solid interfaces
,”
J. Phys.: Condens. Matter
15
,
S19
(
2003
).
27.
N. V.
Priezjev
and
S. M.
Troian
, “
Molecular origin and dynamic behavior of slip in sheared polymer films
,”
Phys. Rev. Lett.
92
,
018302
(
2004
).
28.
R.
Fetzer
,
A.
Münch
,
B.
Wagner
,
M.
Rauscher
, and
K.
Jacobs
, “
Quantifying hydrodynamic slip: A comprehensive analysis of dewetting profiles
,”
Langmuir
23
,
10559
(
2007
).
29.
O.
Bäumchen
,
R.
Fetzer
,
M.
Klos
,
M.
Lessel
,
L.
Marquant
,
H.
Hähl
, and
K.
Jacobs
, “
Slippage and nanorheology of thin liquid polymer films
,”
J. Phys.: Condens. Matter
24
,
325102
(
2012
).
30.
J. D.
McGraw
,
O.
Bäumchen
,
M.
Klos
,
S.
Haefner
,
M.
Lessel
,
S.
Backes
, and
K.
Jacobs
, “
Nanofluidics of thin polymer films: Linking the slip boundary condition at solid–liquid interfaces to macroscopic pattern formation and microscopic interfacial properties
,”
J. Colloid Interface Sci.
210
,
13
(
2014
).
31.
N.
Tretyakov
and
M.
Müller
, “
Correlation between surface topography and slippage: A molecular dynamics study
,”
Soft Matter
9
,
3613
(
2013
).
32.
A.
Chennevière
,
F.
Cousin
,
F.
Boué
,
E.
Drockenmuller
,
K. R.
Shull
,
L.
Léger
, and
F.
Restagno
, “
Direct molecular evidence of the origin of slip of polymer melts on grafted brushes
,”
Macromolecules
49
,
2348
(
2016
).
33.
C.
Neto
,
D. R.
Evans
,
E.
Bonaccurso
,
H.-J.
Butt
, and
V. S. J.
Craig
, “
Boundary slip in newtonian liquids: A review of experimental studies
,”
Rep. Prog. Phys.
68
,
2859
(
2005
).
34.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, “
Handbook of experimental fluid mechanics
," in
Chapter 19: Microfluidics: The No-Slip Boundary Condition
(
Springer
,
New York
,
2007
).
35.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
(
2010
).
36.
C. M. L. H.
Navier
, “
Mémoire sur les lois du mouvement des fluides
,”
Mem. Acad. Sci. Inst. Fr.
6
,
389
(
1823
).
37.
O.
Bäumchen
,
R.
Fetzer
, and
K.
Jacobs
, “
Reduced interfacial entanglement density affects the boundary conditions of polymer flow
,”
Phys. Rev. Lett.
103
,
247801
(
2009
).
38.
J.
Sagiv
, “
Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces
,”
J. Am. Chem. Soc.
102
,
92
(
1980
).
39.
S. R.
Wasserman
,
G. M.
Whitesides
,
I. M.
Tidswell
,
B. M.
Ocko
,
P. S.
Pershan
, and
J. D.
Axe
, “
The structure of self-assembled monolayers of alkylsiloxanes on silicon: A comparison of results from ellipsometry and low-angle x-ray reflectivity
,”
J. Am. Chem. Soc.
111
,
5852
(
1989
).
40.
I. M.
Tidswell
,
B. M.
Ocko
,
P. S.
Pershan
,
S. R.
Wasserman
,
G. M.
Whitesides
, and
J. D.
Axe
, “
X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes)
,”
Phys. Rev. B
41
,
1111
(
1990
).
41.
T. A.
Tidswell
,
I. M.
Rabedeau
,
P. S.
Pershan
,
S. D.
Kosowsky
,
J. P.
Folkers
, and
G. M.
Whitesides
, “
X-ray grazing incidence diffraction from alkylsiloxane monolayers on silicon wafers
,”
J. Chem. Phys.
95
,
2854
(
1991
).
42.
M.
Lestelius
,
I.
Engquist
,
P.
Tengvall
,
M. K.
Chaudhury
, and
B.
Liedberg
, “
Order/disorder gradients of n-alkanethiols on gold
,”
Colloids Surf., B
15
,
57
(
1999
).
43.
F.
Schreiber
, “
Structure and growth of self-assembling monolayers
,”
Prog. Surf. Sci.
65
,
151
(
2000
).
44.
J. C.
Love
,
L. A.
Estroff
,
J. K.
Kriebel
,
R. G.
Nuzzo
, and
G. M.
Whitesides
, “
Self-assembled monolayers of thiolates on metals as a form of nanotechnology
,”
Chem. Rev.
105
,
1103
(
2005
).
45.
J.
Genzer
and
R. R.
Bhat
, “
Surface-bound soft matter gradients
,”
Langmuir
24
,
2294
(
2008
).
46.
P.
Gutfreund
,
O.
Bäumchen
,
R.
Fetzer
,
D.
van der Grinten
,
M.
Maccarini
,
K.
Jacobs
,
H.
Zabel
, and
M.
Wolff
, “
Solid surface structure affects liquid order at the polystyrene–self-assembled-monolayer interface
,”
Phys. Rev. E
87
,
012396
(
2013
).
47.
M.
Lessel
,
O.
Bäumchen
,
M.
Klos
,
H.
Hähl
,
R.
Fetzer
,
R.
Seemann
,
M.
Paulus
, and
K.
Jacobs
, “
Self-assembled silane monolayers: An efficient step-by-step recipe for high-quality, low energy surfaces
,”
Surf. Interface Anal.
47
,
557
(
2015
).
48.
B. D.
Booth
,
S. G.
Vilt
,
C.
McCabe
, and
G. K.
Jennings
, “
Tribology of monolayer films: Comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon
,”
Langmuir
25
,
9995
(
2009
).
49.
E.
Barrena
,
S.
Kopta
,
D. F.
Ogletree
,
D. H.
Charych
, and
M.
Salmeron
, “
Relationship between friction and molecular structure: Alkylsilane lubricant films under pressure
,”
Phys. Rev. Lett.
82
,
2880
(
1999
).
50.
M.
Chandross
,
E. B.
Webb
 III
,
M. J.
Stevens
,
G. S.
Grest
, and
S. H.
Garofalini
, “
Systematic study of the effect of disorder on nanotribology of self-assembled monolayers
,”
Phys. Rev. Lett.
93
,
166103
(
2004
).
51.
S. G.
Vilt
,
Z.
Leng
,
B. D.
Booth
,
C.
McCabe
, and
G. K.
Jennings
, “
Surface and frictional properties of two-component alkylsilane monolayers and hydroxyl-terminated monolayers on silicon
,”
J. Phys. Chem. C
113
,
14972
(
2009
).
52.

We cannot guarantee that the composition of the resulting SAMs is identical to the relative silane compositions of the precursors, yet a comparison to molecular dynamics simulations provided later (see Figure 4) suggests that the electron density profile of the experimental ϕ = 0.50 monolayer is compatible with the one prepared in the simulations by randomly placing OTS or DTS molecules on silicon oxide binding sites with equal probability.

53.
C.
Krywka
,
M.
Paulus
,
C.
Sternemann
,
M.
Volmer
,
A.
Remhof
,
G.
Nowak
,
A.
Nefedov
,
B.
Pöter
,
M.
Spiegel
, and
M.
Tolan
, “
The new diffractometer for surface x-ray diffraction at beamline Bl9 of DELTA
,”
J. Synchrotron Radiat.
13
,
8
(
2006
).
54.
M.
Tolan
,
X-Ray Scattering from Soft-Matter Thin Films
(
Springer
,
1999
).
55.
G.
Debrégas
,
P.
Martin
, and
F.
Brochard-Wyart
, “
Viscous bursting of suspended films
,”
Phys. Rev. Lett.
75
,
3886
(
1995
).
56.
S.
Wu
, “
Surface and interfacial tensions of polymer melts. II. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene
,”
J. Phys. Chem.
74
,
632
(
1970
).
57.
X-Ray and Neutron Reflectivity: Principles and Applications
, Lecture Notes of Physics 770, edited by
J.
Daillant
and
A.
Gibaud
(
Springer
,
Berlin, Heidelberg
,
1999, 2009
).
58.
P. G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2003
).
59.
C.
Redon
,
F.
Brochard-Wyart
, and
F.
Rondelez
, “
Dynamics of dewetting
,”
Phys. Rev. Lett.
66
,
715
(
1991
).
60.
J. M.
Castillo
,
M.
Klos
,
K.
Jacobs
,
M.
Horsch
, and
H.
Hasse
, “
Characterization of alkylsilane self-assembled monolayers by molecular simulation
,”
Langmuir
31
,
2630
(
2015
).
61.
A.
Müller
and
K.
Lonsdale
, “
The low-temperature form of C18H38
,”
Acta Crystallogr.
1
,
129
(
1948
).
62.
S. R.
Craig
,
G. P.
Hastie
,
K. J.
Roberts
, and
J. N.
Sherwood
, “
Investigation into the structures of some normal alkanes within the homologous series C13H28 to C60H122 using high-resolution synchrotron x-ray powder diffraction
,”
J. Mater. Chem.
4
,
977
(
1994
).
63.
K.
Vorvolakos
and
M. K.
Chaudhury
, “
The effects of molecular weight and temperature on the kinetic friction of silicone rubbers
,”
Langmuir
19
,
6778
(
2003
).
64.
A.
Schallamach
, “
A theory of dynamic rubber friction
,”
Wear
6
,
375
(
1963
).
65.
Y. B.
Chernyak
and
A. I.
Leonov
, “
On the theory of the adhesive friction of elastomers
,”
Wear
108
,
105
(
1986
).
66.
L.
Bocquet
and
J.-L.
Barrat
, “
Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids
,”
Phys. Rev. Lett.
49
,
3079
(
1994
).
67.
K.
Huang
and
I.
Szlufarska
, “
Green-Kubo relation for friction at liquid-solid interfaces
,”
Phys. Rev. E
89
,
032119
(
2014
).
68.
R.
Pit
,
J.
Hervet
, and
L.
Léger
, “
Friction and slip of a simple liquid at a solid surface
,”
Tribol. Lett.
7
,
147
(
1999
).
69.
R.
Pit
,
J.
Hervet
, and
L.
Léger
, “
Direct experimental evidence of slip in hexadecane: Solid interfaces
,”
Phys. Rev. Lett.
85
,
980
(
2000
).
70.
T.
Schmatko
,
H.
Hervet
, and
L.
Léger
, “
Effect of nanometric-scale roughness on slip at the wall of simple fluids
,”
Langmuir
22
,
6843
(
2006
).
71.
K. S.
Gautam
,
A. D.
Schwab
,
A.
Dhinojwala
,
D.
Zhang
,
S. M.
Dougal
, and
M. S.
Yeganeh
, “
Molecular structure of polystyrene at air/polymer and solid/polymer interfaces
,”
Phys. Rev. Lett.
85
,
3854
(
2000
).
72.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2002
).
73.
S.
Pronk
,
S.
Pall
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
(
2013
).
74.

The quoted cubic dependence on contact angle of the dewetting velocity is strictly valid for small angles. Although the contact angles are not necessarily small in our experiments, the expected velocity is always increasing with the equilibrium angle, which is in opposition to the trend observed here.

75.
R.
Fetzer
,
K.
Jacobs
,
B.
Wagner
, and
T. P.
Witelski
, “
New slip regimes and the shape of dewetting thin liquid films
,”
Phys. Rev. Lett.
95
,
127801
(
2005
).
You do not currently have access to this content.