Capillary penetration of a series of entangled poly(ethylene oxide) melts within nanopores of self-ordered alumina follows an approximate t1/2 behavior according to the Lucas-Washburn equation; t is the time. However, the dependence on the capillary diameter deviates from the predicted proportionality to d1/2; d is the pore diameter. We observed a reversal in the dynamics of capillary rise with polymer molecular weight. Chains with 50 entanglements (Mw ≤ 100 kg/mol) or less show a slower capillary rise than theoretically predicted as opposed to chains with more entanglements (Mw ≥ 500 kg/mol) that display a faster capillary rise. Although a faster capillary rise has been predicted by theory and observed experimentally, it is the first time to our knowledge that a slower capillary rise is observed for an entangled polymer melt under conditions of strong confinement (with 2Rg/d = 1). These results are discussed in the light of theoretical predictions for the existence of a critical length scale that depends on the molecular weight and separates the microscopic (d < d*) from the macroscopic (d > d*) regime.

1.
P.-G.
De Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
2.
S.
Granick
, “
Motions and relaxations of confined liquids
,”
Science
253
,
1374
(
1991
).
3.
T.
Sakaue
and
E.
Raphaël
, “
Polymer chains in confined spaces and flow-injection problems: Some remarks
,”
Macromolecules
39
,
2621
(
2006
).
4.
M.
Ediger
and
J.
Forrest
, “
Dynamics near free surfaces and the glass transition in thin polymer films: A view to the future
,”
Macromolecules
47
,
471
(
2013
).
5.
Dynamics in Geometrical Confinement
, edited by
F.
Kremer
(
Springer
,
Leipzig
,
2014
).
6.
J. D.
Beard
,
D.
Rouholamin
,
B. L.
Farmer
,
K. E.
Evans
, and
O. R.
Ghita
, “
Control and modelling of capillary flow of epoxy resin in aligned carbon nanotube forests
,”
RSC Adv.
5
,
39433
(
2015
).
7.
R.
Lucas
, “
Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flüssigkeiten
,”
Kolloid-Z.
23
,
15
(
1918
).
8.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
(
1921
).
9.
K.
Shin
,
S.
Obukhov
,
J.-T.
Chen
,
J.
Huh
,
Y.
Hwang
,
S.
Mok
,
P.
Dobriyal
,
P.
Thiyagarajan
, and
T. P.
Russell
, “
Enhanced mobility of confined polymers
,”
Nat. Mater.
6
,
961
(
2007
).
10.
S.
Ok
,
M.
Steinhart
,
A.
Serbescu
,
C.
Franz
,
F.
Vaca Chávez
, and
K.
Saalwächter
, “
Confinement effects on chain dynamics and local chain order in entangled polymer melts
,”
Macromolecules
43
,
4429
(
2010
).
11.
A.
Serghei
, in
Dynamics in Geometrical Confinement
, edited by
F.
Kremer
(
Springer
,
Leipzig
,
2014
), pp.
165
170
.
12.
B.-Y.
Cao
,
M.
Yang
, and
G.-J.
Hu
, “
Capillary filling dynamics of polymer melts in nanopores: Experiments and rheological modelling
,”
RSC Adv.
6
,
7553
(
2016
).
13.
L.
Mammen
,
P.
Papadopoulos
,
K.
Friedemann
,
S.
Wanka
,
D.
Crespy
,
D.
Vollmer
, and
H.-J.
Butt
, “
Transparent and airtight silica nano- and microchannels with uniform tubular cross-section
,”
Soft Matter
9
,
9824
9832
(
2013
).
14.
A.
Johner
,
K.
Shin
, and
S.
Obukhov
, “
Nanofluidity of a polymer melt: Breakdown of Poiseuille’s flow model
,”
Europhys. Lett.
91
,
38002
(
2010
).
15.
S.
Supple
and
N.
Quirke
, “
Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes
,”
J. Chem. Phys.
121
,
8571
(
2004
).
16.
S.
Supple
and
N.
Quirke
, “
Rapid imbibition of fluids in carbon nanotubes
,”
Phys. Rev. Lett.
90
,
214501
(
2003
).
17.
W.
Stroberg
,
S.
Keten
, and
W. K.
Liu
, “
Hydrodynamics of capillary imbibition under nanoconfinement
,”
Langmuir
28
,
14488
(
2012
).
18.
D.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Capillary rise in nanopores: Molecular dynamics evidence for the Lucas-Washburn equation
,”
Phys. Rev. Lett.
99
,
054501
(
2007
).
19.
H.
Masuda
and
K.
Fukuda
, “
Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina
,”
Science
268
,
1466
(
1995
).
20.
H.
Masuda
,
F.
Hasegwa
, and
S.
Ono
, “
Self-Ordering of cell Arrangement of anodic porous alumina formed in sulfuric acid solution
,”
J. Electrochem. Soc.
144
,
L127
(
1997
).
21.
H.
Masuda
,
K.
Yada
, and
A.
Osaka
, “
Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution
,”
Jpn. J. Appl. Phys., Part 2
37
,
L1340
(
1998
).
22.
M.
Steinhart
,
Self-Assembled Nanomaterials II
(
Springer
,
Berlin
,
2008
), pp.
123
187
.
23.
S.
Alexandris
,
G.
Sakellariou
,
M.
Steinhart
, and
G.
Floudas
, “
Dynamics of unentangled cis-1, 4-polyisoprene confined to nanoporous alumina
,”
Macromolecules
47
,
3895
(
2014
).
24.
S.
Alexandris
,
P.
Papadopoulos
,
G.
Sakellariou
, and
M.
Steinhart
,
H.-J.
Butt
, and
G.
Floudas
, “
Interfacial energy and glass temperature of polymers confined to nanoporous alumina
,”
Macromolecules
49
,
7400
(
2016
).
25.
J.
Martin
,
M.
Krutyeva
,
M.
Monkenbusch
,
A.
Arbe
,
J.
Allgaier
,
A.
Radulescu
,
P.
Falus
,
J.
Maiz
,
C.
Mijangos
,
J.
Colmenero
, and
D.
Richter
, “
Direct observation of confined single chain dynamics by neutron scattering
,”
Phys. Rev. Lett.
104
,
197801
(
2010
).
26.
Y.
Suzuki
,
H.
Duran
,
M.
Steinhart
,
H.-J.
Butt
and
G.
Floudas
, “
Suppression of poly (ethylene oxide) crystallization in diblock copolymers of poly (ethylene oxide)-b-poly (ε-caprolactone) confined to nanoporous alumina
,”
Macromolecules
47
,
1793
(
2014
).
27.
Y.
Suzuki
,
H.
Duran
,
M.
Steinhart
,
H.-J.
Butt
, and
G.
Floudas
, “
Homogeneous crystallization and local dynamics of poly(ethylene oxide)(PEO) confined to nanoporous alumina
,”
Soft Matter
9
,
2621
(
2013
).
28.
Y.
Suzuki
,
M.
Steinhart
,
M.
Kappl
,
H.-J.
Butt
, and
G.
Floudas
, “
Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly (ethylene oxide)(PEO) confined to nanoporous alumina
,”
Polymer
99
,
273
(
2016
).
29.
L.
Fetters
,
D.
Lohse
,
D.
Richter
,
T.
Witten
, and
A.
Zirkel
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
,
4639
(
1994
).
30.
S.
Wu
, “
Interfacial and surface tensions of polymers
,”
J. Macromol. Sci., Polym. Rev.
10
,
1
(
1974
).
31.
X.
Deng
,
L.
Mammen
,
H.-J.
Butt
, and
D.
Vollmer
, “
Candle soot as a template for a transparent robust superamphiphobic coating
,”
Science
335
,
67
(
2012
).
32.
R. L.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquid-gas systems
,”
J. Colloid Interface Sci.
50
,
228
(
1975
).
33.
M. N.
Popescu
,
J.
Ralston
, and
R.
Sedev
, “
Capillary rise with velocity-dependent dynamic contact angle
,”
Langmuir
24
,
12710
(
2008
).
34.
M.
Yang
,
B.-Y.
Cao
,
W.
Wang
,
H.-M.
Yun
, and
B.-M.
Chen
, “
Experimental study on capillary filling in nanochannels
,”
Chem. Phys. Lett.
662
,
137
(
2016
).
35.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
(
1986
).
36.
P. G.
De Gennes
, “
Conjectures on the transition from Poiseuille to plug flow in suspensions
, ”
J. Phys.
40
,
783
(
1979
).
37.
L.
Si
,
M. V.
Massa
,
K.
Dalnoki-Veress
,
H. R.
Brown
, and
R. A. L.
Jones
, “
Chain entanglement in thin freestanding polymer films
,”
Phys. Rev. Lett.
94
,
127801
(
2005
).
38.
S.
Rastogi
,
D. R.
Lippits
,
G. W. M.
Peters
,
R.
Graf
,
Y.
Yao
, and
H. W.
Spiess
, “
Heterogeneity in polymer melts from melting of polymer crystals
,”
Nat. Mater.
4
,
635
(
2005
).

Supplementary Material

You do not currently have access to this content.