United-atom molecular-dynamics computer simulations of atactic polystyrene (PS) were performed for the bulk and free-standing films of 2 nm–20 nm thickness, for both linear and cyclic polymers comprised of 80 monomers. Simulated volumetric glass-transition temperatures (Tg) show a strong dependence on the film thickness below 10 nm. The glass-transition temperature of linear PS is 13% lower than that of the bulk for 2.5 nm-thick films, as compared to less than 1% lower for 20 nm films. Our studies reveal that the fraction of the chain-end groups is larger in the interfacial layer with its outermost region approximately 1 nm below the surface than it is in the bulk. The enhanced population of the end groups is expected to result in a more mobile interfacial layer and the consequent dependence of Tg on the film thickness. In addition, the simulations show an enrichment of backbone aliphatic carbons and concomitant deficit of phenyl aromatic carbons in the interfacial film layer. This deficit would weaken the strong phenyl-phenyl aromatic (ππ) interactions and, hence, lead to a lower film-averaged Tg in thin films, as compared to the bulk sample. To investigate the relative importance of the two possible mechanisms (increased chain ends at the surface or weakened ππ interactions in the interfacial region), the data for linear PS are compared with those for cyclic PS. For the cyclic PS, the reduction of the glass-transition temperature is also significant in thin films, albeit not as much as for linear PS. Moreover, the deficit of phenyl carbons in the film interface is comparable to that observed for linear PS. Therefore, chain-end effects alone cannot explain the observed pronounced Tg dependence on the thickness of thin PS films; the weakened phenyl-phenyl interactions in the interfacial region seems to be an important cause as well.

1.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
, “
Supercooled liquids and glasses
,”
J. Phys. Chem.
100
,
13200
13212
(
1996
).
2.
F. H.
Stillinger
and
P. G.
Debenedetti
, “
Glass transition thermodynamics and kinetics
,”
Annu. Rev. Condens. Matter Phys.
4
,
263
285
(
2013
).
3.
M. D.
Ediger
and
J. A.
Forrest
, “
Dynamics near free surfaces and the glass transition in thin polymer films: A view to the future
,”
Macromolecules
47
,
471
478
(
2014
).
4.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids
(
World Scientific
,
Singapore
,
2005
).
5.
J.-L.
Barrat
,
J.
Baschnagel
, and
A. V.
Lyulin
, “
Molecular dynamics simulations of glassy polymers
,”
Soft Matter
6
,
3430
3446
(
2010
).
6.
C.
Donati
,
J. F.
Douglas
,
W.
Kob
,
S. J.
Plimpton
,
P. H.
Poole
, and
S. C.
Glotzer
, “
Stringlike cooperative motion in a supercooled liquid
,”
Phys. Rev. Lett.
80
,
2338
2341
(
1998
).
7.
J. I.
Brauman
, “
Glasses and amorphous materials
,”
Science
267
,
1887
(
1995
).
8.
C. A.
Angell
, “
Formation of glasses from liquids and biopolymers
,”
Science
267
,
1924
1935
(
1995
).
9.
F. H.
Stillinger
, “
A topographic view of supercooled liquids and glass formation
,”
Science
267
,
1935
1939
(
1995
).
10.
B.
Frick
and
D.
Richter
, “
The microscopic basis of the glass transition in polymers from neutron scattering studies
,”
Science
267
,
1939
1945
(
1995
).
11.
I. M.
Hodge
, “
Physical aging in polymer glasses
,”
Science
267
,
1945
1947
(
1995
).
12.
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer
,
2003
).
13.
S.
Peters
,
S.
Napolitano
,
H.
Meyer
,
M.
Wübbenhorst
, and
J.
Baschnagel
, “
Modeling dielectric relaxation in polymer glass simulations: Dynamics in the bulk and in supported polymer films
,”
Macromolecules
41
,
7729
7743
(
2008
).
14.
S.
Napolitano
,
V.
Lupascu
, and
M.
Wübbenhorst
, “
Temperature dependence of the deviations from bulk behavior in ultrathin polymer films
,”
Macromolecules
41
,
1061
1063
(
2008
).
15.
D.
Cangialosi
,
A.
Alegrìa
, and
J.
Colmenero
, “
Route to calculate the length scale for the glass transition in polymers
,”
Phys. Rev. E
76
,
011514
(
2007
).
16.
K.
Binder
,
J.
Baschnagel
,
S.
Böhmer
, and
W.
Paul
, “
Simulation of the glass transition in polymeric systems: Evidence for an underlying phase transition?
,”
Philos. Mag. B
77
,
591
608
(
1998
).
17.
J. A.
Forrest
and
K.
Dalnoki-Veress
, “
The glass transition in thin polymer films
,”
Adv. Colloid Interface Sci.
94
,
167
196
(
2001
).
18.
K.
Paeng
and
M. D.
Ediger
, “
Molecular motion in free-standing thin films of poly(methylmethacrylate), poly(4-tert-butylstyrene), poly(α-methylstyrene), and poly(2-vinylpyridine)
,”
Macromolecules
44
,
7034
7042
(
2011
).
19.
C.
Gay
,
P. G.
de Gennes
,
E.
Raphael
, and
F.
Brochard-Wyart
, “
Injection threshold for a statistically branched polymer inside a nanopore
,”
Macromolecules
29
,
8379
8382
(
1996
).
20.
Y.
Wang
and
I.
Teraoka
, “
Computer simulation of semidilute polymer solutions in confined geometry: Pore as a microscopic probe
,”
Macromolecules
30
,
8473
8477
(
1997
).
21.
Y.
Ito
, in
Synthesis of Biocomposite Materials
, edited by
Y.
Imanishi
(
Chemical Rubber
,
Boca Raton, FL
,
1992
).
22.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
, “
Size-dependent depression of the glass transition temperature in polymer films
,”
Europhys. Lett.
27
,
59
64
(
1994
).
23.
S.
Kawana
and
R. A. L.
Jones
, “
Character of the glass transition in thin supported polymer films
,”
Phys. Rev. E
63
,
021501
(
2001
).
24.
Z.
Fakhraai
,
J. S.
Sharp
, and
J. A.
Forrest
, “
Effect of sample preparation on the glass-transition of thin polystyrene films
,”
J. Polym. Sci., Part B: Polym. Phys.
42
,
4503
4507
(
2004
).
25.
J. A.
Forrest
,
K.
Dalnoki-Veress
, and
J. R.
Dutcher
, “
Interface and chain confinement effects on the glass transition temperature of thin polymer films
,”
Phys. Rev. E
56
,
5705
5716
(
1997
).
26.
T.
Kanaya
,
T.
Miyazaki
,
R.
Inoue
, and
K.
Nishida
, “
Thermal expansion and contraction of polymer thin films
,”
Phys. Status Solidi B
242
,
595
606
(
2005
).
27.
R.
Inoue
,
T.
Kanaya
,
T.
Miyazaki
,
K.
Nishida
,
I.
Tsukushi
, and
K.
Shibata
, “
Glass transition and thermal expansivity of polystyrene thin films
,”
Mater Sci. Eng. A
442
,
367
370
(
2006
).
28.
G. B.
DeMaggio
,
W. E.
Frieze
,
D. W.
Gidley
,
Z.
Ming
,
H. A.
Hristov
, and
A. F.
Yee
, “
Interface and surface effects on the glass transition in thin polystyrene films
,”
Phys. Rev. Lett.
78
,
1524
1527
(
1997
).
29.
W. E.
Wallace
,
N. C.
Beck Tan
,
W. L.
Wu
, and
S.
Satija
, “
Mass density of polystydrene thin films measured by twin neutron reflectivity
,”
J. Chem. Phys.
108
,
3798
3804
(
1998
).
30.
K.
Fukao
and
Y.
Miyamoto
, “
Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene
,”
Phys. Rev. E
61
,
1743
1754
(
2000
).
31.
D. R.
Priestley
,
L. J.
Broadbelt
,
J. M.
Torkelson
, and
K.
Fukao
, “
Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene
,”
Phys. Rev. E
75
,
061806
(
2007
).
32.
A.
Serghei
,
H.
Huth
,
C.
Schick
, and
F.
Kremer
, “
Glassy dynamics in thin polymer layers having a free upper interface
,”
Macromolecules
41
,
3636
3639
(
2008
).
33.
M. Y.
Efremov
,
E. A.
Olson
,
M.
Zhang
,
Z.
Zhang
, and
L. H.
Allen
, “
Glass transition in ultrathin polymer films: Calorimetric study
,”
Phys. Rev. Lett.
91
,
085703
(
2003
).
34.
P.
Zoller
and
D. J.
Walsh
,
Standard Pressure-Volume-Temperature Data for Polymers
(
Technomic
,
Lancaster
,
1995
).
35.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
, “
Interface and surface effects on the glass-transition temperature in thin polymer films
,”
Faraday Discuss.
98
,
219
230
(
1994
).
36.
M.
Tress
,
M.
Erber
,
E. U.
Mapesa
,
H.
Huth
,
J.
Müller
,
A.
Serghei
,
C.
Schick
,
K.-J.
Eichhorn
,
B.
Voit
, and
F.
Kremer
, “
Glassy dynamics and glass transition in nanometric thin layers of polystyrene
,”
Macromolecules
43
,
9937
9944
(
2010
).
37.
A.
Serghei
, “
Challenges in glassy dynamics of polymers
,”
Macromol. Chem. Phys.
209
,
1415
1423
(
2008
).
38.
T. B.
Karim
and
G. B.
McKenna
, “
Unusual surface mechanical properties of poly(α-methylstyrene): Surface softening and stiffening at different temperatures
,”
Macromolecules
45
,
9697
9706
(
2012
).
39.
J. L.
Lenhart
,
D. A.
Fischer
,
T. L.
Chantawansri
, and
J. W.
Andzelm
, “
Surface orientation of polystyrene based polymers: Steric effects from pendant groups on the phenyl ring
,”
Langmuir
28
,
15713
15724
(
2012
).
40.
P. G.
de Gennes
, “
Glass transitions in thin polymer films
,”
Eur. Phys. J. E
2
,
201
205
(
2000
).
41.
R. P.
White
,
C. C.
Price
, and
J. E. G.
Lipson
, “
Effect of interfaces on the glass transition of supported and freestanding polymer thin films
,”
Macromolecules
48
,
4132
4141
(
2015
).
42.
T. M.
Truskett
and
V.
Ganesan
, “
Ideal glass transitions in thin films: An energy landscape perspective
,”
J. Chem. Phys.
119
,
1897
1900
(
2003
).
43.
W.-S.
Xu
and
K. F.
Freed
, “
Influence of cohesive energy and chain stiffness on polymer glass formation
,”
Macromolecules
47
,
6990
6997
(
2014
).
44.
K. F.
Mansfield
and
D. N.
Theodorou
, “
Molecular dynamics simulation of a glassy polymer surface
,”
Macromolecules
24
,
6283
6294
(
1991
).
45.
T. S.
Jain
and
J. J.
de Pablo
, “
Monte Carlo simulation of free-standing polymer films near the glass transition temperature
,”
Macromolecules
35
,
2167
2176
(
2002
).
46.
A. R. C.
Baljon
,
J.
Billen
, and
R.
Khare
, “
Percolation of immobile domains in supercooled thin polymeric films
,”
Phys. Rev. Lett.
93
,
255701
(
2004
).
47.
J.
Baschnagel
and
F.
Varnik
, “
Computer simulations of supercooled polymer melts in the bulk and in confined geometry
,”
J. Phys.: Condens. Matter
17
,
R851
R953
(
2005
).
48.
A. R. C.
Baljon
,
S.
Williams
,
N. K.
Balabaev
,
F.
Paans
,
D.
Hudzinskyy
, and
A. V.
Lyulin
, “
Simulated glass transition in free-standing thin polystyrene films
,”
J. Polym. Sci., Part B: Polym. Phys.
48
,
1160
1167
(
2010
);
A. R. C.
Baljon
,
R. B.
DeGraaff
,
M. H. M.
van Weert
, and
R.
Khare
, “
Glass transition behavior of polymer films of nanoscopic dimension
,”
Macromolecules
38
,
2391
(
2005
).
49.
D.
Hudzinskyy
,
A. V.
Lyulin
,
A. R. C.
Baljon
,
N. K.
Balabaev
, and
M. A. J.
Michels
, “
Strong confinement effects on glass transition temperature in atactic polystyrene films
,”
Macromolecules
44
,
2299
2310
(
2011
).
50.
D.
Hudzinskyy
and
A. V.
Lyulin
, “
Confinement and shear effects for atactic polystyrene film structure and mechanics
,”
Modell. Simul. Mater. Sci. Eng.
19
,
074007
(
2011
).
51.
D.
Hudzinskyy
,
M. A. J.
Michels
, and
A. V.
Lyulin
, “
Rejuvenation, aging, and confinement effects in atactic-polystyrene films subjected to oscillatory shear
,”
Macromol. Theory Simul.
22
,
71
84
(
2013
).
52.
M.
Solar
,
E. U.
Mapesa
,
F.
Kremer
,
K.
Binder
, and
W.
Paul
, “
The dielectric α-relaxation in polymer films: A comparison between experiments and atomistic simulations
,”
Europhys. Lett.
104
,
66004
(
2013
).
53.
S.-J.
Xie
,
H.-J.
Qian
, and
Z.-Y.
Lu
, “
The glass transition of polymers with different side-chain stiffness confined in freestanding thin films
,”
J. Chem. Phys.
142
,
074902
(
2015
).
54.
N. J.
Soni
,
P.-H.
Lin
, and
J.
Khare
, “
Effect of cross-linker length on the thermal and volumetric properties of cross-linked epoxy networks: A molecular simulation study
,”
Polymer
53
,
1015
1019
(
2012
).
55.
A. V.
Lyulin
and
M. A. J.
Michels
, “
Molecular dynamics simulation of bulk atactic polystyrene in the vicinity of Tg
,”
Macromolecules
35
,
1463
1472
(
2002
).
56.
A. V.
Lyulin
,
N. K.
Balabaev
, and
M. A. J.
Michels
, “
Correlated segmental dynamics in amorphous atactic polystyrene: A molecular dynamics simulation study
,”
Macromolecules
35
,
9595
9604
(
2002
).
57.
B.
Vorselaars
,
A. V.
Lyulin
, and
M. A. J.
Michels
, “
Development of heterogeneity near the glass transition: Phenyl-ring-flip motions in polystyrene
,”
Macromolecules
40
,
6001
6011
(
2007
).
58.
P. R.
Sundararajan
, “
Configurational studies on poly-α-methylstyrene
,”
Macromolecules
10
,
623
627
(
1977
).
59.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
60.
A. S.
Lemak
and
N. K.
Balabaev
, “
A comparison between collisional dynamics and Brownian dynamics
,”
Mol. Simul.
15
,
223
231
(
1995
).
61.
A. S.
Lemak
and
N. K.
Balabaev
, “
Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method
,”
J. Comput. Chem.
17
,
1685
1695
(
1996
).
62.
D. Y.
Yoon
,
P. R.
Sundararajan
, and
P. J.
Flory
, “
Conformational characteristics of polystyrene
,”
Macromolecules
8
,
776
783
(
1975
).
63.
J. P.
Wittmer
,
H.
Meyer
,
J.
Baschnagel
,
A.
Johner
,
S.
Obukhov
,
L.
Mattioni
,
M.
Müller
, and
A. N.
Semenov
, “
Long range bond-bond correlations in dense polymer solutions
,”
Phys. Rev. Lett.
93
,
147801
(
2004
).
64.
J. P.
Wittmer
,
P.
Beckrich
,
H.
Meyer
,
A.
Cavallo
,
A.
Johner
, and
J.
Baschnagel
, “
Intramolecular long-range correlations in polymer melts: The segmental size distribution and its moments
,”
Phys. Rev. E
76
,
011803
(
2007
).
65.
L. C. E.
Struik
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier
,
Amsterdam
,
1978
).
66.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1980
).
67.
P. G.
Santangelo
and
C. M.
Roland
, “
Molecular weight dependence of fragility in polystyrene
,”
Macromolecules
31
,
4581
4585
(
1998
).
68.
P. G.
Santangelo
,
C. M.
Roland
,
T.
Chang
,
D.
Cho
, and
J.
Roovers
, “
Dynamics near the glass temperature of low molecular weight cyclic polystyrene
,”
Macromolecules
34
,
9002
9005
(
2001
).
69.
K. U.
Kirst
,
F.
Kremer
,
T.
Pakula
, and
J.
Hollingshurst
, “
Molecular dynamics of cyclic and linear poly(dimethylsiloxanes)
,”
Colloid Polym. Sci.
272
,
1420
1429
(
1994
).
70.
E. C.
Glor
and
Z.
Fakhraai
, “
Facilitation of interfacial dynamics in entangled polymer films
,”
J. Chem. Phys.
141
,
194505
(
2014
).
71.
E. C.
Glor
,
R. J.
Composto
, and
Z.
Fakhraai
, “
Glass transition dynamics and fragility of ultrathin miscible polymer blend films
,”
Macromolecules
48
,
6682
6689
(
2015
).
72.
R. D.
Priestley
,
C. J.
Ellison
,
L. J.
Broadbelt
, and
J. M.
Torkelson
, “
Structural relaxation of polymer glasses at surfaces, interfaces, and in between
,”
Science
309
,
456
459
(
2005
).
73.
S.
Lee
,
A. V.
Lyulin
,
C. W.
Frank
, and
D. Y.
Yoon
, “
Interface characteristics of polystyrene melts in free-standing thin films and on graphite surface from molecular dynamics simulations
,”
Polymer
(submitted).

Supplementary Material

You do not currently have access to this content.