Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

1.
T. J.
Mitchison
and
L. P.
Cramer
, “
Actin-based cell motility and cell locomotion
,”
Cell
84
(
3
),
371
379
(
1996
).
2.
R. D.
Vale
, “
The molecular motor toolbox for intracellular transport
,”
Cell
112
(
4
),
467
480
(
2003
).
3.
S.
Wang
and
P. G.
Wolynes
, “
Active contractility in actomyosin networks
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
17
),
6446
6451
(
2012
).
4.
H.
Gutzeit
and
R.
Koppa
, “
Time-lapse film analysis of cytoplasmic streaming during late oogenesis of drosophila
,”
Development
67
(
1
),
101
111
(
1982
).
5.
W. E.
Theurkauf
 et al, “
Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes
,”
Science
265
,
2093
(
1994
).
6.
P. K.
Trong
,
J.
Guck
, and
R. E.
Goldstein
, “
Coupling of active motion and advection shapes intracellular cargo transport
,”
Phys. Rev. Lett.
109
(
2
),
028104
(
2012
).
7.
M. B.
Short
,
C. A.
Solari
,
S.
Ganguly
,
T. R.
Powers
,
J. O.
Kessler
, and
R. E.
Goldstein
, “
Flows driven by flagella of multicellular organisms enhance long-range molecular transport
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
22
),
8315
8319
(
2006
).
8.
D. R.
Brumley
,
M.
Polin
,
T. J.
Pedley
, and
R. E.
Goldstein
, “
Hydrodynamic synchronization and metachronal waves on the surface of the colonial alga volvox carteri
,”
Phys. Rev. Lett.
109
(
26
),
268102
(
2012
).
9.
J.
Elgeti
and
G.
Gompper
, “
Emergence of metachronal waves in cilia arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
12
),
4470
4475
(
2013
).
10.
L. R.
Serbus
,
B.-J.
Cha
,
W. E.
Theurkauf
, and
W. M.
Saxton
, “
Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in drosophila oocytes
,”
Development
132
(
16
),
3743
3752
(
2005
).
11.
K.
Sawamoto
,
H.
Wichterle
,
O.
Gonzalez-Perez
,
J. A.
Cholfin
,
M.
Yamada
,
N.
Spassky
,
N. S.
Murcia
,
J. M.
Garcia-Verdugo
,
O.
Marin
,
J. L. R.
Rubenstein
 et al, “
New neurons follow the flow of cerebrospinal fluid in the adult brain
,”
Science
311
(
5761
),
629
632
(
2006
).
12.
E. A.
Gaffney
,
H.
Gadêlha
,
D. J.
Smith
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Mammalian sperm motility: Observation and theory
,”
Annu. Rev. Fluid Mech.
43
,
501
528
(
2011
).
13.
L. G.
Wilson
,
L. M.
Carter
, and
S. E.
Reece
, “
High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
47
),
18769
18774
(
2013
).
14.
S.
Duhr
and
D.
Braun
, “
Why molecules move along a temperature gradient
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
52
),
19678
19682
(
2006
).
15.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1992
).
16.
R. P.
Feynman
, “
There’s plenty of room at the bottom
,”
Eng. Sci.
23
(
5
),
22
36
(
1960
).
17.
K.
Ishiyama
,
M.
Sendoh
, and
K. I.
Arai
, “
Magnetic micromachines for medical applications
,”
J. Magn. Magn. Mater.
242
,
41
46
(
2002
).
18.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
19.
R. A. L.
Jones
,
Soft Machines: Nanotechnology and Life
(
Oxford University Press
,
2004
).
20.
V.
Schaller
,
C.
Weber
,
C.
Semmrich
,
E.
Frey
, and
A. R.
Bausch
, “
Polar patterns of driven filaments
,”
Nature
467
(
7311
),
73
77
(
2010
).
21.
T.
Sanchez
,
D.
Welch
,
D.
Nicastro
, and
Z.
Dogic
, “
Cilia-like beating of active microtubule bundles
,”
Science
333
(
6041
),
456
459
(
2011
).
22.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
(
1
),
3
11
(
1977
).
23.
B.
Abecassis
,
C.
Cottin-Bizonne
,
C.
Ybert
,
A.
Ajdari
, and
L.
Bocquet
, “
Boosting migration of large particles by solute contrasts
,”
Nat. Mater.
7
(
10
),
785
789
(
2008
).
24.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
(
1
),
61
99
(
1989
).
25.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
(
41
),
13424
13431
(
2004
).
26.
W.
Gao
,
S.
Sattayasamitsathit
,
J.
Orozco
, and
J.
Wang
, “
Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes
,”
J. Am. Chem. Soc.
133
(
31
),
11862
11864
(
2011
).
27.
A.
Mallick
,
D.
Lai
, and
S.
Roy
, “
Autonomous movement induced in chemically powered active soft-oxometalates using dithionite as fuel
,”
New J. Chem.
40
(
2
),
1057
1062
(
2016
).
28.
W.
Wang
,
L.
Angelica Castro
,
M.
Hoyos
, and
T. E.
Mallouk
, “
Autonomous motion of metallic microrods propelled by ultrasound
,”
ACS Nano
6
(
7
),
6122
6132
(
2012
).
29.
A.
Ghosh
and
P.
Fischer
, “
Controlled propulsion of artificial magnetic nanostructured propellers
,”
Nano Lett.
9
(
6
),
2243
2245
(
2009
).
30.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
, “
Microscopic artificial swimmers
,”
Nature
437
(
7060
),
862
865
(
2005
).
31.
S. J.
Ebbens
and
J. R.
Howse
, “
In pursuit of propulsion at the nanoscale
,”
Soft Matter
6
(
4
),
726
738
(
2010
).
32.
J.
Wang
and
W.
Gao
, “
Nano/microscale motors: Biomedical opportunities and challenges
,”
ACS Nano
6
(
7
),
5745
5751
(
2012
).
33.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
T. E.
Mallouk
, and
A.
Sen
, “
Small power: Autonomous nano-and micromotors propelled by self-generated gradients
,”
Nano Today
8
(
5
),
531
554
(
2013
).
34.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers-single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
(
5
),
056601
(
2015
).
35.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
, “
Spontaneous motion in hierarchically assembled active matter
,”
Nature
491
(
7424
),
431
434
(
2012
).
36.
G.
Jayaraman
,
S.
Ramachandran
,
S.
Ghose
,
A.
Laskar
,
M.
Saad Bhamla
,
P. B.
Sunil Kumar
, and
R.
Adhikari
, “
Autonomous motility of active filaments due to spontaneous flow-symmetry breaking
,”
Phys. Rev. Lett.
109
(
15
),
158302
(
2012
).
37.
A.
Laskar
,
R.
Singh
,
S.
Ghose
,
G.
Jayaraman
,
P. B.
Sunil Kumar
, and
R.
Adhikari
, “
Hydrodynamic instabilities provide a generic route to spontaneous biomimetic oscillations in chemomechanically active filaments
,”
Sci. Rep.
3
,
1964
(
2013
).
38.
A.
Laskar
and
R.
Adhikari
, “
Brownian microhydrodynamics of active filaments
,”
Soft Matter
11
(
47
),
9073
9085
(
2015
).
39.
R.
Singh
and
R.
Adhikari
, “
Traction relations for active colloids and their application
,” preprint arXiv:1603.05735 (
2016
).
40.
R.
Singh
and
R.
Adhikari
, “
Universal hydrodynamic mechanisms for crystallization in active colloidal suspensions
,”
Phys. Rev. Lett.
117
,
228002
(
2016
).
41.
R.
Singh
,
S.
Ghose
, and
R.
Adhikari
, “
Many-body microhydrodynamics of colloidal particles with active boundary layers
,”
J. Stat. Mech.: Theory Exp.
2015
(
6
),
P06017
.
42.
K.
Klenin
and
J.
Langowski
, “
Computation of writhe in modeling of supercoiled DNA
,”
Biopolymers
54
(
5
),
307
317
(
2000
).
43.
M. J.
Lighthill
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
(
2
),
109
118
(
1952
).
44.
R. E.
Isele-Holder
,
J.
Jäger
,
G.
Saggiorato
,
J.
Elgeti
, and
G.
Gompper
, “
Dynamics of self-propelled filaments pushing a load
,”
Soft Matter
12
,
8495
(
2016
).
45.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
, “
Motility of catalytic nanoparticles through self-generated forces
,”
Chem. - Eur. J.
11
(
22
),
6462
6470
(
2005
).
46.
B. U.
Felderhof
, “
Stokesian spherical swimmers and active particles
,”
Phys. Rev. E
91
(
4
),
043018
(
2015
).
47.
B. U.
Felderhof
, “
Spinning swimming of volvox by tangential helical wave
,” preprint arXiv:1601.00755 (
2016
).
48.
C.-k.
Tung
,
F.
Ardon
,
A.
Roy
,
D. L.
Koch
,
S. S.
Suarez
, and
M.
Wu
, “
Emergence of upstream swimming via a hydrodynamic transition
,”
Phys. Rev. Lett.
114
(
10
),
108102
(
2015
).
49.
E. M.
Gauger
,
M. T.
Downton
, and
H.
Stark
, “
Fluid transport at low Reynolds number with magnetically actuated artificial cilia
,”
Eur. Phys. J. E
28
(
2
),
231
242
(
2009
).

Supplementary Material

You do not currently have access to this content.