In this paper, we explore osmotic transport by means of molecular dynamics (MD) simulations. We first consider osmosis through a membrane and investigate the reflection coefficient of an imperfectly semi-permeable membrane, in the dilute and high concentration regimes. We then explore the diffusio-osmotic flow of a solute-solvent fluid adjacent to a solid surface, driven by a chemical potential gradient parallel to the surface. We propose a novel non-equilibrium MD (NEMD) methodology to simulate diffusio-osmosis, by imposing an external force on every particle, which properly mimics the chemical potential gradient on the solute in spite of the periodic boundary conditions. This NEMD method is validated theoretically on the basis of linear-response theory by matching the mobility with their Green–Kubo expressions. Finally, we apply the framework to more realistic systems, namely, a water-ethanol mixture in contact with a silica or a graphene surface.

1.
O.
Kedem
and
A.
Katchalsky
, “
Thermodynamic analysis of the permeability of biological membranes to non-electrolytes
,”
Biochim. Biophys. Acta
27
,
229
246
(
1958
).
2.
S. S.
Sablani
,
M. F. A.
Goosen
,
R.
Al-Belushi
, and
M.
Wilf
, “
Concentration polarization in ultrafiltration and reverse osmosis: A critical review
,”
Desalination
141
,
269
289
(
2001
).
3.
B.
Abécassis
,
C.
Cottin-Bizonne
,
C.
Ybert
,
A.
Ajdari
, and
L.
Bocquet
, “
Boosting migration of large particles by solute contrasts
,”
Nat. Mater.
7
,
785
789
(
2008
).
4.
V.
Yadav
,
H.
Zhang
,
R.
Pavlick
, and
A.
Sen
, “
Triggered ‘on/off’ micropumps and colloidal photodiode
,”
J. Am. Chem. Soc.
134
,
15688
15691
(
2012
).
5.
C.
Lee
,
C.
Cottin-Bizonne
,
A.-L.
Biance
,
P.
Joseph
,
L.
Bocquet
, and
C.
Ybert
, “
Osmotic flow through fully permeable nanochannels
,”
Phys. Rev. Lett.
112
,
244501
(
2014
).
6.
Y.-X.
Shen
,
P. O.
Saboe
,
I. T.
Sines
,
M.
Erbakan
, and
M.
Kumar
, “
Biomimetic membranes: A review
,”
J. Membr. Sci.
454
,
359
381
(
2014
).
7.
S.
Shin
,
E.
Um
,
B.
Sabass
,
J. T.
Ault
,
M.
Rahimi
,
P. B.
Warren
, and
H. A.
Stone
, “
Size-dependent control of colloid transport via solute gradients in dead-end channels
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
257
261
(
2016
).
8.
S.
Marbach
and
L.
Bocquet
, “
Active osmotic exchanger for efficient nanofiltration inspired by the kidney
,”
Phys. Rev. X
6
,
031008
(
2016
).
9.
C.
Lee
,
C.
Cottin-Bizonne
,
R.
Fulcrand
,
L.
Joly
, and
C.
Ybert
, “
Nanoscale dynamics versus surface interactions: What dictates osmotic transport?
,”
J. Phys. Chem. Lett.
8
,
478
483
(
2017
).
10.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
, “
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
,”
Nature
494
,
455
458
(
2013
).
11.
W. J.
van Egmond
,
M.
Saakes
,
S.
Porada
,
T.
Meuwissen
,
C. J. N.
Buisman
, and
H. V. M.
Hamelers
, “
The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation
,”
J. Power Sources
325
,
129
139
(
2016
).
12.
O.
Kedem
and
A.
Katchalsky
, “
A physical interpretation of the phenomenological coefficients of membrane permeability
,”
J. Gen. Physiol.
45
,
143
179
(
1961
).
13.
A.
Katchalsky
and
O.
Kedem
, “
Thermodynamics of flow processes in biological systems
,”
Biophys. J.
2
,
53
78
(
1962
).
14.
K. S.
Spiegler
and
O.
Kedem
, “
Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes
,”
Desalination
1
,
311
326
(
1966
).
15.
G. S.
Manning
, “
Binary diffusion and bulk flow through a potential-energy profile: A kinetic basis for the thermodynamic equations of flow through membranes
,”
J. Chem. Phys.
49
,
2668
2675
(
1968
).
16.
S.
Marbach
,
H.
Yoshida
, and
L.
Bocquet
, “
Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches
,”
J. Chem. Phys.
146
,
194701
(
2017
).
17.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
1095
(
2010
).
18.
J. L.
Anderson
,
M. E.
Lowell
, and
D. C.
Prieve
, “
Motion of a particle generated by chemical gradients Part 1. Non-electrolytes
,”
J. Fluid Mech.
117
,
107
121
(
1982
).
19.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
,
61
99
(
1989
).
20.
J. L.
Talen
and
A. J.
Staverman
, “
Osmometry with membranes permeable to solvent and solute
,”
Trans. Faraday Soc.
61
,
2794
2799
(
1965
);
J. L.
Talen
and
A. J.
Staverman
, “
Negative reflection coefficients
,”
Trans. Faraday Soc.
61
,
2800
2804
(
1965
).
21.
J. L.
Anderson
and
D. M.
Malone
, “
Mechanism of osmotic flow in porous membranes
,”
Biophys. J.
14
,
957
(
1974
).
22.
T. W.
Lion
and
R. J.
Allen
, “
Osmosis in a minimal model system
,”
J. Chem. Phys.
137
,
244911
(
2012
).
23.
See http://lammps.sandia.gov for the code.
24.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
2011
).
25.
A.
Ajdari
and
L.
Bocquet
, “
Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond
,”
Phys. Rev. Lett.
96
,
186102
(
2006
).
26.
H.
Yoshida
,
H.
Mizuno
,
T.
Kinjo
,
H.
Washizu
, and
J.-L.
Barrat
, “
Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels
,”
J. Chem. Phys.
140
,
214701
(
2014
).
27.
R.
Ganti
,
Y.
Liu
, and
D.
Frenkel
, “
Molecular simulation of thermo-osmotic slip
,” preprint arXiv:1702.02499 (
2017
).
28.
D. K.
Bhattacharya
and
G. C.
Lie
, “
Molecular-dynamics simulations of nonequilibrium heat and momentum transport in very dilute gases
,”
Phys. Rev. Lett.
62
,
897
(
1989
).
29.
B. D.
Todd
and
D. J.
Evans
, “
Temperature profile for Poiseuille flow
,”
Phys. Rev. E
55
,
2800
(
1997
).
30.
J.-L.
Barrat
and
L.
Bocquet
, “
Large slip effect at a nonwetting fluid-solid interface
,”
Phys. Rev. Lett.
82
,
4671
(
1999
).
31.
H.
Yoshida
and
L.
Bocquet
, “
Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions
,”
J. Chem. Phys.
144
,
234701
(
2016
).
32.
H.
Yoshida
,
H.
Mizuno
,
T.
Kinjo
,
H.
Washizu
, and
J.-L.
Barrat
, “
Generic transport coefficients of a confined electrolyte solution
,”
Phys. Rev. E
90
,
052113
(
2014
).
33.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
34.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
, “
Optimized intermolecular potential functions for liquid hydrocarbons
,”
J. Am. Chem. Soc.
106
,
6638
6646
(
1984
).
35.
W. L.
Jorgensen
, “
Optimized intermolecular potential functions for liquid alcohols
,”
J. Phys. Chem.
90
,
1276
1284
(
1986
).
36.
S. H.
Lee
and
P. J.
Rossky
, “
A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—A molecular dynamics simulation study
,”
J. Chem. Phys.
100
,
3334
3345
(
1994
).
37.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
38.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1989
).
39.
K.
Falk
,
F.
Sedlmeier
,
L.
Joly
,
R. R.
Netz
, and
L.
Bocquet
, “
Ultralow liquid/solid friction in carbon nanotubes: Comprehensive theory for alcohols, alkanes, OMCTS, and water
,”
Langmuir
28
,
14261
14272
(
2012
).
You do not currently have access to this content.