In this paper, we explore various forms of osmotic transport in the regime of high solute concentration. We consider both the osmosis across membranes and diffusio-osmosis at solid interfaces, driven by solute concentration gradients. We follow a mechanical point of view of osmotic transport, which allows us to gain much insight into the local mechanical balance underlying osmosis. We demonstrate in particular how the general expression of the osmotic pressure for mixtures, as obtained classically from the thermodynamic framework, emerges from the mechanical balance controlling non-equilibrium transport under solute gradients. Expressions for the rejection coefficient of osmosis and the diffusio-osmotic mobilities are accordingly obtained. These results generalize existing ones in the dilute solute regime to mixtures with arbitrary concentrations.

1.
P.
Sheeler
and
D. E.
Bianchi
,
Cell and Molecular Biology
, 3rd ed. (
Wiley
,
New York
,
1987
).
2.
K. H.
Jensen
,
E.
Rio
,
R.
Hansen
,
C.
Clanet
, and
T.
Bohr
, “
Osmotically driven pipe flows and their relation to sugar transport in plants
,”
J. Fluid Mech.
636
,
371
396
(
2009
).
3.
O.
Kedem
and
A.
Katchalsky
, “
A physical interpretation of the phenomenological coefficients of membrane permeability
,”
J. Gen. Physiol.
45
,
143
179
(
1961
).
4.
B. E.
Logan
and
M.
Elimelech
, “
Membrane-based processes for sustainable power generation using water
,”
Nature
488
,
313
319
(
2012
).
5.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
, “
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
,”
Nature
494
,
455
458
(
2013
).
6.
J. R.
Werber
,
C. O.
Osuji
, and
M.
Elimelech
, “
Materials for next-generation desalination and water purification membranes
,”
Nat. Rev. Mater.
1
,
16018
(
2016
).
7.
J. W.
Gibbs
, “
Semi-permeable films and osmotic pressure
,”
Nature
55
,
461
462
(
1897
).
8.
E. A.
Guggenheim
,
Thermodynamics: An Advanced Treatment for Chemists and Physicists
, 7th ed. (
Elsevier
,
Amsterdam, North-Holland
,
1985
).
9.
I. M.
Klotz
and
R. M.
Rosenberg
,
Chemical Thermodynamics Basic Concepts and Methods
, 7th ed. (
John Wiley & Sons, Inc.
,
2008
).
10.
J. L.
Talen
and
A. J.
Staverman
, “
Osmometry with membranes permeable to solvent and solute
,”
Trans. Faraday Soc.
61
,
2794
2799
(
1965
);
J. L.
Talen
and
A. J.
Staverman
,
Negative reflection coefficients
,”
Trans. Faraday Soc.
61
,
2800
2804
(
1965
).
11.
C.
Lee
,
C.
Cottin-Bizonne
,
A.-L.
Biance
,
P.
Joseph
,
L.
Bocquet
, and
C.
Ybert
, “
Osmotic flow through fully permeable nanochannels
,”
Phys. Rev. Lett.
112
,
244501
(
2014
).
12.
C.
Lee
,
C.
Cottin-Bizonne
,
R.
Fulcrand
,
L.
Joly
, and
C.
Ybert
, “
Nanoscale dynamics versus surface interactions: What dictates osmotic transport?
,”
J. Phys. Chem. Lett.
8
,
478
483
(
2017
).
13.
G. S.
Manning
, “
Binary diffusion and bulk flow through a potential-energy profile: A kinetic basis for the thermodynamic equations of flow through membranes
,”
J. Chem. Phys.
49
,
2668
2675
(
1968
).
14.
A.
Ajdari
and
L.
Bocquet
, “
Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond
,”
Phys. Rev. Lett.
96
,
186102
(
2006
).
15.
O.
Kedem
and
A.
Katchalsky
, “
Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranes
,”
Trans. Faraday Soc.
59
,
1918
1930
(
1963
);
O.
Kedem
and
A.
Katchalsky
, “
Permeability of composite membranes. Part 2.—Parallel elements
,”
Trans. Faraday Soc.
59
,
1931
1940
(
1963
);
O.
Kedem
and
A.
Katchalsky
, “
Permeability of composite membranes. Part 3.—Series array of elements
,”
Trans. Faraday Soc.
59
,
1941
1953
(
1963
).
16.
J. L.
Anderson
and
D. M.
Malone
, “
Mechanism of osmotic flow in porous membranes
,”
Biophys. J.
14
,
957
(
1974
).
17.
B.
Abécassis
,
C.
Cottin-Bizonne
,
C.
Ybert
,
A.
Ajdari
, and
L.
Bocquet
, “
Boosting migration of large particles by solute contrasts
,”
Nat. Mater.
7
,
785
789
(
2008
).
18.
V.
Yadav
,
H.
Zhang
,
R.
Pavlick
, and
A.
Sen
, “
Triggered ‘on/off’ micropumps and colloidal photodiode
,”
J. Am. Chem. Soc.
134
,
15688
15691
(
2012
).
19.
S.
Shin
,
E.
Um
,
B.
Sabass
,
J. T.
Ault
,
M.
Rahimi
,
P. B.
Warren
, and
H. A.
Stone
, “
Size-dependent control of colloid transport via solute gradients in dead-end channels
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
257
261
(
2016
).
20.
N.
Shi
,
R.
Nery-Azevedo
,
A. I.
Abdel-Fattah
, and
T. M.
Squires
, “
Diffusiophoretic focusing of suspended colloids
,”
Phys. Rev. Lett.
117
,
258001
(
2016
).
21.
P.
Debye
, “
Equilibrium and sedimentation of uncharged particles in inhomogeneous electric fields
,” in
Ion Transport Across Membranes
, edited by
H. T.
Clarke
(
Academic Press
,
1954
), pp.
273
285
.
22.
E.
Grim
and
K.
Sollner
, “
The contributions of normal and anomalous osmosis to the osmotic effects arising across charged membranes with solutions of electrolytes
,”
J. Gen. Physiol.
40
,
887
899
(
1957
).
23.
C. B.
Picallo
,
S.
Gravelle
,
L.
Joly
,
E.
Charlaix
, and
L.
Bocquet
, “
Nanofluidic osmotic diodes: Theory and molecular dynamics simulations
,”
Phys. Rev. Lett.
111
,
244501
(
2013
).
24.
J.-L.
Barrat
and
J.-P.
Hansen
,
Basic Concepts for Simple and Complex Liquids
(
Cambridge University Press
,
2003
).
25.
J. R.
Pappenheimer
, “
Passage of molecules through capillary walls
,”
Physiol. Rev.
33
,
387
423
(
1953
), available online at http://physrev.physiology.org/content/33/3/387.
26.
E.
Ruckenstein
, “
Can phoretic motions be treated as interfacial tension gradient driven phenomena?
,”
J. Colloid Interface Sci.
83
,
77
81
(
1981
).
27.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
,
61
99
(
1989
).
28.
H.
Yoshida
,
S.
Marbach
, and
L.
Bocquet
, “
Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamic simulations
,”
J. Chem. Phys
146
,
194702
(
2017
).
You do not currently have access to this content.