An alternative to the density functional theory is the use of wavefunction based electronic structure calculations for solids. In order to perform them, the Exponential Wall (EW) problem has to be resolved. It is caused by an exponential increase of the number of configurations with increasing electron number N. There are different routes one may follow. One is to characterize a many-electron wavefunction by a vector in Liouville space with a cumulant metric rather than in Hilbert space. This removes the EW problem. Another is to model the solid by an impurity or fragment embedded in a bath which is treated at a much lower level than the former. This is the case in the Density Matrix Embedding Theory (DMET) or the Density Embedding Theory (DET). The latter two are closely related to a Schmidt decomposition of a system and to the determination of the associated entanglement. We show here the connection between the two approaches. It turns out that the DMET (or DET) has an identical active space as a previously used Local Ansatz, based on a projection and partitioning approach. Yet, the EW problem is resolved differently in the two cases. By studying a H10 ring, these differences are analyzed with the help of the method of increments.

1.
W.
Kohn
,
Rev. Mod. Phys.
71
,
1253
(
1999
).
2.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
3.
D. G.
Liakos
and
F.
Neese
,
J. Chem. Theory Comput.
11
,
4054
(
2015
).
4.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
5.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
6.
J.
Čižek
,
Adv. Chem. Phys.
14
,
35
(
1969
).
7.
H.
Kümmel
,
K. H.
Lührmann
, and
J. G.
Zabolitzky
,
Phys. Rep.
36
,
1
(
1978
).
8.
R. F.
Bishop
,
Theor. Chim. Acta
80
,
95
(
1991
).
9.
J.-Q.
Sun
and
R.
Bartlett
, in
Correlation and Localization
, Topics in Current Chemistry, edited by
P.
Surjan
, et al
(
Springer
,
Berlin
,
1999
), Vol. 203.
10.
Accurate Condensed-Phase Quantum Chemistry
, edited by
F. R.
Manby
(
CRC Press
,
Boca Raton
,
2011
), and references therein.
11.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2013
).
12.
S.
Sharma
and
A.
Alavi
,
J. Chem. Phys.
143
,
102815
(
2015
).
13.
J. A. F.
Kersten
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
145
,
054117
(
2016
).
14.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
,
Rev. Mod. Phys.
68
,
13
(
1996
).
15.
G.
Knizia
and
G. K.-L.
Chan
,
Phys. Rev. Lett.
109
,
186404
(
2012
).
16.
G.
Knizia
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
9
,
1428
(
2013
).
17.
I. W.
Bulik
,
W.
Chen
, and
G. E.
Scuseria
,
J. Chem. Phys.
141
,
054113
(
2014
).
18.
S.
Wouters
,
C. A.
Jiménez-Hoyos
,
Q.
Sun
, and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
12
,
2706
(
2016
).
19.
P.
Fulde
,
Correlated Electrons in Quantum Matter
(
World Scientific Publishing
,
Singapore
,
2012
).
20.
K.
Kladko
and
P.
Fulde
,
Int. J. Quantum Chem.
66
,
377
(
1998
).
21.
P.
Fulde
,
Nat. Phys.
12
,
106
(
2016
).
22.
T.
Schork
and
P.
Fulde
,
J. Chem. Phys.
97
,
9195
(
1992
).
23.
P. O.
Löwdin
,
J. Mol. Spectrosc.
10
,
12
(
1963
);
P. O.
Löwdin
,
J. Mol. Spectrosc.
13
,
326
(
1964
);
P. O.
Löwdin
,
J. Mol. Spectrosc.
14
,
112
(
1964
).
24.
P. O.
Löwdin
,
Int. J. Quantum Chem.
21
,
69
(
1982
);
24.
P. O.
Löwdin
,
Int. J. Quantum Chem.
29
,
1651
(
1986
).
25.
G.
Stollhoff
and
P.
Fulde
,
J. Chem. Phys.
73
,
4548
(
1980
).
26.
P.
Fulde
and
G.
Stollhoff
,
Int. J. Quantum Chem.
42
,
103
(
1992
).
27.
E.
Mayer
and
M. G.
Mayer
,
Statistical Mechanics
(
Wiley
,
New York
,
1940
).
28.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
29.
H.
Stoll
,
Phys. Rev. B
46
,
6700
(
1992
).
30.
H.
Stoll
,
J. Chem. Phys.
97
,
8449
(
1992
).
31.
B.
Paulus
,
Phys. Rep.
428
,
1
(
2006
).
32.
W.
Kohn
,
Phys. Rev.
115
,
809
(
1959
).
33.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
34.
B.
Kiel
,
G.
Stollhoff
,
C.
Weigel
,
P.
Fulde
, and
H.
Stoll
,
Z. Phys. B: Condens. Matter
46
,
1
(
1982
).
35.
M. V.
Ganduglia-Pirovano
and
G.
Stollhoff
,
Phys. Rev. B
44
,
3526
(
1991
).
36.
G.
König
and
G.
Stollhoff
,
Phys. Rev. Lett.
65
,
1239
(
1990
).
37.
molpro, version 2015.1, is a package of ab initio programs written by
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
and others, seehttp://www.molpro.net.
38.
B.
Paulus
and
H.
Stoll
, in
Accurate Condensed-Phase Quantum Chemistry
, edited by
F. R.
Manby
(
CRC Press
,
Boca Raton
,
2011
), p.
57
.
39.
I.
Peschel
,
Braz. J. Phys.
42
,
267
(
2012
).
40.
H.
Stoll
,
Ann. Phys. (Wiley)
508
,
355
(
1996
).
41.
B.
Paulus
and
K.
Rościszewski
,
Chem. Phys. Lett.
394
,
96
(
2004
).
42.
B.
Paulus
,
K.
Rościszewski
,
N.
Gaston
,
P.
Schwerdtfeger
, and
H.
Stoll
,
Phys. Rev. B
70
,
165106
(
2004
).
43.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
44.
R.
Orós
,
Ann. Phys. (Elsevier)
349
,
117
(
2014
).
45.
U.
Schollwöck
,
Rev. Mod. Phys.
77
,
259
(
2005
).
46.
F.
Verstraete
,
V.
Murg
, and
J. I.
Cirac
,
Adv. Phys.
57
,
143
(
2008
).
47.
U.
Benedikt
,
H.
Auer
,
M.
Espig
,
W.
Hackbusch
, and
A. A.
Auer
,
Mol. Phys.
111
,
2398
(
2013
).
You do not currently have access to this content.