We propose a pruned multi-configuration time-dependent Hartree (MCTDH) method with systematically expanding nondirect product bases and use it to solve the time-independent Schrödinger equation. No pre-determined pruning condition is required to select the basis functions. Using about 65 000 basis functions, we calculate the first 69 vibrational eigenpairs of acetonitrile, CH3CN, to an accuracy better than that achieved in a previous pruned MCTDH calculation which required more than 100 000 basis functions. In addition, we compare the new pruned MCTDH method with the established multi-layer MCTDH (ML-MCTDH) scheme and determine that although ML-MCTDH is somewhat more efficient when low or intermediate accuracy is desired, pruned MCTDH is more efficient when high accuracy is required. In our largest calculation, the vast majority of the energies have errors smaller than 0.01 cm1.

1.
S.
Carter
and
N. C.
Handy
,
Comput. Phys. Rep.
5
,
117
(
1986
).
2.
J.
Tennyson
,
Comput. Phys. Rep.
4
,
1
(
1986
).
3.
Z.
Bacic
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
4.
E. L.
Sibert
,
Int. Rev. Phys. Chem.
9
,
1
(
1990
).
5.
T.
Carrington
, Jr.
, in
Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
(
John Wiley & Sons, Ltd.
,
West Sussex
,
1998
), pp.
3157
3166
.
6.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
7.
J.
Bowman
,
T.
Carrington
, Jr.
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
8.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
9.
H.-G.
Yu
and
J. T.
Muckerman
,
J. Mol. Spectrosc.
214
,
11
(
2002
).
10.
G.
Czakó
,
T.
Furtenbacher
,
A. G.
Császár
, and
V.
Szalay
,
Mol. Phys.
102
,
2411
(
2004
).
11.
E.
Mátyus
,
G.
Czakó
, and
A. G.
Császár
,
J. Chem. Phys.
130
,
134112
(
2009
).
12.
E.
Mátyus
,
J.
Šimunek
, and
A. G.
Császár
,
J. Chem. Phys.
131
,
074106
(
2009
).
13.
R. E.
Bellman
,
Adaptive Control Processes: A Guided Tour
(
Princeton University Press
,
Princeton
,
1961
).
14.
R. J.
Whitehead
and
N. C.
Handy
,
J. Mol. Spectrosc.
59
,
459
(
1976
).
15.
G. D.
Carney
,
Adv. Chem. Phys.
37
,
305
(
1978
).
16.
L.
Halonen
,
D. W.
Noid
, and
M. S.
Child
,
J. Chem. Phys.
78
,
2803
(
1983
).
17.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
18.
A.
Maynard
,
R. E.
Wyatt
, and
C.
Iung
,
J. Chem. Phys.
106
,
9483
(
1997
).
19.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Phys. Chem. A
105
,
2575
(
2001
).
20.
R.
Dawes
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
122
,
134101
(
2005
).
21.
R.
Dawes
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
124
,
054102
(
2006
).
22.
J.
Cooper
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
130
,
214110
(
2009
).
23.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
131
,
174103
(
2009
).
24.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
134
,
054126
(
2011
).
25.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
135
,
064101
(
2011
).
26.
B.
Poirier
,
J. Theor. Comput. Chem.
2
,
65
(
2003
).
27.
A.
Shimshovitz
and
D. J.
Tannor
,
Phys. Rev. Lett.
109
,
070402
(
2012
).
28.
J.
Brown
and
T.
Carrington
, Jr.
,
Phys. Rev. Lett.
114
,
058901
(
2015
).
29.
J. R.
Henderson
and
J.
Tennyson
,
Chem. Phys. Lett.
173
,
133
(
1990
).
30.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
101
,
8494
(
1994
).
31.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
117
,
6923
(
2002
).
32.
H.-G.
Yu
,
J. Chem. Phys.
117
,
8190
(
2002
).
33.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
34.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
129
,
234102
(
2008
).
35.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
138
,
104106
(
2013
).
36.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
37.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
38.
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
(
Wiley-VCH
,
Weinheim
,
2009
).
39.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
40.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
41.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
42.
W.
Hackbusch
and
S.
Kühn
,
J. Fourier Anal. Appl.
15
,
706
(
2009
).
43.
L.
Grasedyck
,
SIAM J. Matrix Anal. Appl.
31
,
2029
(
2010
).
44.
H.
Wang
and
M.
Thoss
,
J. Phys. Chem. A
111
,
10369
(
2007
).
45.
I.
Kondov
,
M.
Čížek
,
C.
Benesch
,
H.
Wang
, and
M.
Thoss
,
J. Phys. Chem. C
111
,
11970
(
2007
).
46.
H.
Wang
and
M.
Thoss
,
New J. Phys.
10
,
115005
(
2008
).
47.
R.
Wodraszka
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
145
,
044110
(
2016
).
48.
J.
Brown
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
145
,
144104
(
2016
).
49.
U.
Manthe
and
H.
Köppel
,
J. Chem. Phys.
93
,
345
(
1990
).
50.
R.
Chen
,
G.
Ma
, and
H.
Guo
,
J. Chem. Phys.
114
,
4763
(
2001
).
51.
P.
Sarkar
,
N.
Poulin
, and
T.
Carrington
, Jr.
,
J. Chem. Phys.
110
,
10269
(
1999
).
52.
N. M.
Poulin
,
M. J.
Bramley
,
T.
Carrington
, Jr.
,
H. G.
Kjaergaard
, and
B. R.
Henry
,
J. Chem. Phys.
104
,
7807
(
1996
).
53.
H. R.
Larsson
,
B.
Hartke
, and
D. J.
Tannor
,
J. Chem. Phys.
145
,
204108
(
2016
).
54.
U.
Manthe
,
J. Chem. Phys.
128
,
064108
(
2008
).
55.
P. A. M.
Dirac
,
Math. Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
56.
J.
Frenkel
,
Wave Mechanics
(
Clarendon Press
,
Oxford
,
1934
).
57.
C.
Lubich
,
From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
(
European Mathematical Society
,
Zurich
,
2008
).
58.
D. J.
Haxton
and
C. W.
McCurdy
,
Phys. Rev. A
91
,
012509
(
2015
).
59.
C.
Lévêque
and
L. B.
Madsen
,
New J. Phys.
19
,
043007
(
2017
).
60.
G. A.
Worth
,
J. Chem. Phys.
112
,
8322
(
2000
).
61.
M. H.
Beck
and
H.-D.
Meyer
,
Z. Phys. D
42
,
113
(
1997
).
62.
U.
Manthe
,
Chem. Phys.
329
,
168
(
2006
).
63.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
64.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
65.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
(
The Johns Hopkins University Press
,
1996
).
66.
L.
Doriol
,
F.
Gatti
,
C.
Iung
, and
H.-D.
Meyer
,
J. Chem. Phys.
129
,
224109
(
2008
).
67.
H.-D.
Meyer
,
F. L.
Quere
,
C.
Leonard
, and
F.
Gatti
,
Chem. Phys.
329
,
179
(
2006
).
68.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
69.
L.
Halonen
and
M. S.
Child
,
Comput. Phys. Commun.
51
,
173
(
1988
).
70.
A.
Shimshovitz
,
Z.
Baĉić
, and
D. J.
Tannor
,
J. Chem. Phys.
141
,
234106
(
2014
).
71.
J.
Brown
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
143
,
044104
(
2015
).
72.
T.
Carrington
, Jr.
, “
Using iterative eigensolvers to compute vibrational spectra
,”
Adv. Chem. Phys.
(to be published).
73.
M.
Rakhuba
and
I.
Oseledets
,
J. Chem. Phys.
145
,
124101
(
2016
).
74.
D.
Bégué
,
P.
Carbonnière
, and
C.
Pouchan
,
J. Phys. Chem. A
109
,
4611
(
2005
).
75.
P. S.
Thomas
and
T.
Carrington
, Jr.
,
J. Phys. Chem. A
119
,
13074
(
2015
).
76.
G.
Avila
and
T.
Carrington
, Jr.
, “
Pruned bases that are compatible with iterative eigensolvers and general potentials: New results for CH3CN
,”
Chem. Phys.
482
,
3
8
(
2017
).
77.
U.
Manthe
,
J. Chem. Phys.
142
,
244109
(
2015
).
78.
C.
Lubich
,
Appl. Math. Res. Express
2015
,
311
.
79.
F.
Otto
,
J. Chem. Phys.
140
,
014106
(
2014
).
80.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
104
,
7974
(
1996
).
81.
S.
Manzhos
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
129
,
224104
(
2008
).
82.
U.
Manthe
,
J. Chem. Phys.
130
,
054109
(
2009
).
83.
R.
Dawes
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
121
,
726
(
2004
).
84.
S. A.
Smolyak
,
Sov. Math. Dokl.
4
,
240
(
1963
).
85.
F.-J.
Delvos
and
W.
Schempp
,
Pitman Research Notes in Mathematics
(
Longman
,
New York
,
1989
), Vol. 230.
86.
H.-J.
Bungartz
and
M.
Griebel
,
Acta Numer.
13
,
147
(
2004
).
87.
G.
Avila
and
T.
Carrington
,
J. Chem. Phys.
143
,
214108
(
2015
).
88.
See http://mctdh.uni-hd.de for Heidelberg MCTDH package.
You do not currently have access to this content.