The imidazole motif is widely encountered in biomolecules, and its biological role, for instance, as a proton relay, is often linked to its ability to form hydrogen bonds with water molecules. The detailed characterization of the hydration pattern of imidazole and of its changes upon protonation is thus of high interest. Here, we combine neutron scattering experiments with force field simulations to provide an unprecedented characterization of the neutral and protonated imidazole solvation at the atomistic level. We show that neutron diffraction data can be used to assess the quality of the imidazole force field in molecular simulations. Simulations using the CHARMM general force field for imidazole are in excellent agreement with the experimental neutron scattering data and we use them to provide an atomic scale interpretation of the neutron scattering patterns. Upon protonation, we clearly identify the signature of the reorganization in the hydration pattern caused by the change from one H-bond donor and one H-bond acceptor group for imidazole to two H-bond donor groups for imidazolium. We also point the limits of the experiment, which are rather insensitive to details of the H-bond geometry at the deprotonated nitrogen of imidazole and further complement the description of the hydration structure with ab initio molecular dynamics simulations.

1.
R. J.
Sundberg
and
R. B.
Martin
,
Chem. Rev.
74
,
471
517
(
1974
).
2.
F.
Mamedov
,
R. T.
Sayre
, and
S.
Styring
,
Biochemistry
37
,
14245
14256
(
1998
).
3.
P.
Adelroth
,
M. L.
Paddock
,
A.
Tehrani
,
J. T.
Beatty
,
G.
Feher
, and
M. Y.
Okamura
,
Biochemistry
40
,
14538
14546
(
2001
).
4.
Z.
Fisher
,
J. A. H.
Prada
,
C.
Tu
,
D.
Duda
,
C.
Yoshioka
,
H. Q.
An
,
L.
Govindasamy
,
D. N.
Silverman
, and
R.
McKenna
,
Biochemistry
44
,
1097
1105
(
2005
).
5.
J.
Hu
,
R.
Fu
,
K.
Nishimura
,
L.
Zhang
,
H. X.
Zhou
,
D. D.
Busath
,
V.
Vijayvergiya
, and
T. A.
Cross
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
6865
6870
(
2006
).
6.
G.
Alagona
,
C.
Ghio
,
P.
Nagy
,
K.
Simon
, and
G.
Naray-Szabo
,
J. Comput. Chem.
11
,
1038
1046
(
1990
).
7.
P. I.
Nagy
,
G. J.
Durant
, and
D. A.
Smith
,
J. Am. Chem. Soc.
115
,
2912
2922
(
1993
).
8.
A.
Henao
,
A. J.
Johnston
,
E.
Guardia
,
S. E.
McLain
, and
L. C.
Pardo
,
Phys. Chem. Chem. Phys.
18
,
23006
23016
(
2016
).
9.
A. J.
Johnston
,
Y. R.
Zhang
,
S.
Busch
,
L. C.
Pardo
,
S.
Imberti
, and
S. E.
McLain
,
J. Phys. Chem. B
119
,
5979
5987
(
2015
).
10.
J. L.
Finney
and
A. K.
Soper
,
Chem. Soc. Rev.
23
,
1
(
1994
).
11.
A. K.
Soper
,
G. W.
Neilson
,
J. E.
Enderby
, and
R. A.
Howe
,
J. Phys. C: Solid State Phys.
10
,
1793
1801
(
1977
).
12.
A.
Botti
,
F.
Bruni
,
S.
Imberti
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Chem. Phys.
120
,
10154
10162
(
2004
).
13.
P. E.
Mason
,
G. W.
Neilson
,
C. E.
Dempsey
,
A. C.
Barnes
, and
J. M.
Cruickshank
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
4557
4561
(
2003
).
14.
P. E.
Mason
,
G. W.
Neilson
,
J. E.
Enderby
,
M. L.
Saboungi
,
C. E.
Dempsey
,
A. D.
MacKerell
, Jr.
, and
J. W.
Brady
,
J. Am. Chem. Soc.
126
,
11462
11470
(
2004
).
15.
L.
Tavagnacco
,
J. W.
Brady
,
F.
Bruni
,
S.
Callear
,
M. A.
Ricci
,
M. L.
Saboungi
, and
A.
Cesaro
,
J. Phys. Chem. B
119
,
13294
13301
(
2015
).
16.
R.
Hayes
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
13
,
3237
3247
(
2011
).
17.
R.
Hayes
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
,
Angew. Chem., Int. Ed.
51
,
7468
7471
(
2012
).
18.
D. T.
Bowron
,
C.
D’Agostino
,
L. F.
Gladden
,
C.
Hardacre
,
J. D.
Holbrey
,
M. C.
Lagunas
,
J.
McGregor
,
M. D.
Mantle
,
C. L.
Mullan
, and
T. G.
Youngs
,
J. Phys. Chem. B
114
,
7760
7768
(
2010
).
19.
C.
Hardacre
,
J. D.
Holbrey
,
S. E. J.
McMath
,
D. T.
Bowron
, and
A. K.
Soper
,
J. Chem. Phys.
118
,
273
278
(
2003
).
20.
C.
Hardacre
,
J. D.
Holbrey
,
C. L.
Mullan
,
T. G.
Youngs
, and
D. T.
Bowron
,
J. Chem. Phys.
133
,
074510
(
2010
).
21.
P.
Jungwirth
,
H. E.
Fischer
,
J.
Hladilkova
, and
P. E.
Mason
, Ion-Ion pairing in aqueous solutions of imidazolium chloride, Institut Laue-Langevin (ILL) , for which the data are available at:
G.
Neilson
,
J. W.
Brady
,
H. E.
Fischer
,
J.
Hladilkova
,
P.
Jungwirth
,
P. E.
Mason
,
M.-L.
Sabougi
, and
L.
Tavagnacco
, Institut Laue-Langevin (ILL), ,
2012
.
22.
A. C.
Barnes
,
S. B.
Lague
,
P. S.
Salmon
, and
H. E.
Fischer
,
J. Phys.: Condens. Matter
9
,
6159
6173
(
1997
).
23.
G. W.
Neilson
,
P. E.
Mason
,
S.
Ramos
, and
D.
Sullivan
,
Philos. Trans. R. Soc., A
359
,
1575
1591
(
2001
).
24.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
6271
(
1987
).
25.
L. X.
Dang
,
G. K.
Schenter
,
V.-A.
Glezakou
, and
J. L.
Fulton
,
J. Phys. Chem. B
110
,
23644
23654
(
2006
).
26.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
935
(
1983
).
27.
J.
Heyda
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. B
114
,
8744
8749
(
2010
).
28.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
Mackerell
, Jr.
,
J. Comput. Chem.
31
,
671
690
(
2010
).
29.
W. L.
Jorgensen
and
N. A.
McDonald
,
J. Mol. Struct.: THEOCHEM
424
,
145
155
(
1998
).
30.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
,
J. Comput. Chem.
26
,
1701
1718
(
2005
).
31.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
7190
(
1981
).
32.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
33.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
1472
(
1997
).
34.
E.
Pluharova
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. A
117
,
11766
11773
(
2013
).
35.
M.
Kohagen
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. B
118
,
7902
7909
(
2014
).
36.
M.
Vazdar
,
P.
Jungwirth
, and
P. E.
Mason
,
J. Phys. Chem. B
117
,
1844
1848
(
2013
).
37.
E.
Wernersson
and
P.
Jungwirth
,
J. Chem. Theory Comput.
6
,
3233
3240
(
2010
).
38.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
,
2613
2626
(
2011
).
39.
E.
Pluhařová
,
H. E.
Fischer
,
P. E.
Mason
, and
P.
Jungwirth
,
Mol. Phys.
112
,
1230
1240
(
2014
).
40.
B. L.
Bhargava
and
S.
Balasubramanian
,
J. Chem. Phys.
127
,
114510
(
2007
).
41.
E. J.
Maginn
,
J. Phys.: Condens. Matter
21
,
373101
(
2009
).
42.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
128
(
2005
).
43.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
44.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
45.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
1710
(
1996
).
46.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
3100
(
1988
).
47.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
789
(
1988
).
48.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
1799
(
2006
).
49.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
50.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
).
51.
A. K.
Soper
,
ISRN Phys. Chem.
2013
,
279463
.
52.
A. K.
Soper
and
C. J.
Benmore
,
Phys. Rev. Lett.
101
,
065502
(
2008
).
53.
P. E.
Mason
,
G. W.
Neilson
,
J. E.
Enderby
,
M. L.
Saboungi
, and
J. W.
Brady
,
J. Phys. Chem. B
109
,
13104
13111
(
2005
).
54.
G.
Chessari
,
C. A.
Hunter
,
C. M.
Low
,
M. J.
Packer
,
J. G.
Vinter
, and
C.
Zonta
,
Chem. - Eur. J.
8
,
2860
2867
(
2002
).
55.
Z.
Xu
,
H. H.
Luo
, and
D. P.
Tieleman
,
J. Comput. Chem.
28
,
689
697
(
2007
).
56.
G. A.
Dilabio
and
A.
Otero-de-la-Rosa
,
Noncovalent Interactions in Density-Functional Theory
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2014
).
57.
J.
Ireta
,
J.
Neugebauer
, and
M.
Scheffler
,
J. Phys. Chem. A
108
,
5692
5698
(
2004
).

Supplementary Material

You do not currently have access to this content.